Kazuyuki Furuta

Kyoto University, Kyoto, Kyoto-fu, Japan

Are you Kazuyuki Furuta?

Claim your profile

Publications (9)30.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are the major sources of histamine, which is released in response to immunological stimulations. The synthesis of histamine is catalyzed by histidine decarboxylase (HDC). Previous studies have shown that Hdc(-/-) mast cells exhibit aberrant granule morphology with severely decreased granule content. Here, we investigated whether the histamine synthesized in mast cells regulates the granule maturation of murine mast cells. Several genes, including those encoding granule proteases and enzymes involved in heparin biosynthesis, were down-regulated in Hdc(-/-) peritoneal mast cells. Impaired granule maturation was also found in Hdc(-/-) bone marrow-derived cultured mast cells when they were co-cultured with fibroblasts in the presence of c-kit ligand. Exogenous application of histamine and several H4 receptor agonists restored the granule maturation of Hdc(-/-) cultured mast cells. However, the maturation of granules was largely normal in Hrh4(-/-) peritoneal mast cells. Depletion of cellular histamine with tetrabenazine, an inhibitor of vesicular monoamine transporter-2, did not affect granule maturation. In vivo experiments with mast cell deficient, Kit(W) /Kit(W-V) mice indicated that the expression of the Hdc gene in mast cells is required for granule maturation. These results suggest that histamine promotes granule maturation in mast cells and acts as an pro-inflammatory mediator. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 09/2013; · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate culture models for tissue mast cells are required to determine how they are involved in regulation of local immune responses. We previously established a culture model for cutaneous mast cells, in which bone marrow-derived immature mast cells were co-cultured with Swiss 3T3 fibroblasts in the presence of stem cell factor. In this study, we focused on the roles of hyaluronan, which is produced by the feeder fibroblasts and forms the extracellular matrix during the co-culture period. Hyaluronan synthesis was found to be mediated by hyaluronan synthase 2 (HAS2) expressed in Swiss 3T3 cells. A decreases in the amount of hyaluronan, which was achieved by retroviral expression of short hairpin RNA for Has2 or by addition of hyaluronidase, significantly enhanced the proliferation of the cultured mast cells without any obvious effects on their maturation. Although we previously demonstrated that CD44 is required for proliferation of cutaneous mast cells, the deficiency of hyaluronan did not affect the proliferation of the cultured mast cells that lack CD44. These findings suggest that the extracellular matrix containing hyaluronan may have a potential to restrict proliferation of cutaneous mast cells in a CD44-independent manner.
    Biological & Pharmaceutical Bulletin 01/2012; 35(3):408-12. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated IgE-mediated allergic responses in a metabolic syndrome model rat strain, SHRSP.Z, which develops obesity and hypertension to cast light on the relationship between metabolic disturbances and allergic responses. IgE-mediated cutaneous anaphylactic responses were severely attenuated in this strain regardless of the presence of fa/fa mutation, compared with the parental WKY/Izm strain. Furthermore, in the peritoneal mast cells of both the SHRSP.Z and SHRSP/Izm strains, IgE-mediated activation, such as degranulation and protein tyrosine phosphorylation, was severely impaired whereas no significant differences were found in morphology and number of peritoneal mast cells. Immunoblot analyses revealed that phosphorylation levels of Syk upon IgE-mediated antigen stimulation were significantly decreased and basal expression of linker for activation of T cells (LAT) was down-regulated in peritoneal mast cells of the SHRSP strains. These results suggest that attenuated cutaneous allergic responses in the SHRSP.Z strain might be attributed to impaired FcvarepsilonRI-mediated signal transduction in mast cells.
    Immunology letters 11/2009; 128(1):74-9. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By using the recently established culture system that reproduces the terminal differentiation process of connective tissue-type mast cells, we found significant transcriptional induction of CD44. As CD44 is a primary receptor for hyaluronan (HA), which is one of the major extracellular matrix components, we investigated the role of CD44 in cutaneous mast cells. When co-cultured with fibroblasts, mouse bone marrow-derived cultured mast cells (BMMCs) were found to form clusters in an HA-dependent manner. As compared with BMMCs derived from the wild-type mice, those from the CD44(-/-) mice exhibited impaired growth during the co-cultured period. Furthermore, in the peritoneal cavities and ear tissues, mature mast cells were fewer in number in the CD44(-/-) mice than in the wild-type mice. We investigated roles of CD44 in mast cell proliferation by reconstituting BMMCs into the tissues of mast cell-deficient, Kit(W)/Kit(W-v) mice, and found that the number of metachromatic cells upon acidic toluidine blue staining in the tissues transplanted with CD44(-/-) BMMCs was not significantly changed for 10 weeks, whereas that in the tissues transplanted with the CD44(+/+) BMMCs was significantly increased. These results suggest that CD44 plays a crucial role in the regulation of the cutaneous mast cell number.
    Laboratory Investigation 03/2009; 89(4):446-55. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand physiological roles of tissue mast cells, we established a culture system where bone marrow-derived immature mast cells differentiate into the connective tissue-type mast cell (CTMC)-like cells through modifying the previous co-culture system with Swiss 3T3 fibroblasts. Our system was found to reproducibly mimic the differentiation of CTMCs on the basis of several criteria, such as granule maturation and sensitivity to cationic secretagogues. The gene expression profile obtained by the microarray analyses was found to reflect many aspects of the differentiation. Our system is thus helpful to gain deeper insights into terminal differentiation of CTMCs.
    FEBS Letters 05/2008; 582(10):1444-50. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine synthesis in mammals. Although accumulating evidence has indicated the post-translational processing of HDC, it remains unknown what kinds of proteases are involved. We investigated the processing of HDC in a mouse mastocytoma, P-815, using a lentiviral expression system. HDC was expressed as a 74-kDa precursor form, which is cleaved to yield the 55- and 60-kDa forms upon treatment with butyrate. Alanine-scanning mutations revealed that two tandem aspartate residues (Asp(517)-Asp(518), Asp(550)-Asp(551)) are critical for the processing. Treatment with butyrate caused an increase in the enzyme activity of the cells expressing the wild type HDC, but not in the cells expressing the processing-incompetent mutant. An increase in histamine synthesis by butyrate was accompanied by formation of the 55- and 60-kDa form of HDC. In addition, the in vitro translated 74-kDa form of HDC was found to undergo a limited cleavage by purified human caspase-9, whereas the alanine-substituted mutants were not. Processing and enzymatic activation of HDC in P-815 cells was enhanced in the presence of a Zn(2+) chelator, TPEN. Although treatment with butyrate and TPEN drastically augmented the protease activity of caspase-3, and -9, no apoptotic cell death was observed. Both enzymatic activation and processing of HDC were completely suppressed by a pan-caspase inhibitor, partially but significantly by a specific inhibitor for caspase-9, but not by a caspase-3 inhibitor. These results suggest that, in P-815 cells, histamine synthesis is augmented through the post-translational cleavage of HDC, which is mediated by caspase-9.
    Journal of Biological Chemistry 06/2007; 282(18):13438-46. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that, when expressed in COS-7 cells, L-histidine decarboxylase (HDC), which has neither an amino terminal signal sequence nor a hydrophobic membrane anchor, was localized in the endoplasmic reticulum (ER), although its orientation in the membrane remains to be clarified. Protease digestion and immunofluorescence analyses of the cells, of which plasma membrane was selectively permeabilized, revealed that the amino terminal 50-kDa portion of HDC is hardly accessible to proteases and antibodies added exogenously from the cytosolic side. Green fluorescent protein fused with the carboxyl terminal 20-kDa region of HDC at its carboxyl terminus exhibited the same characteristics as native HDC. These results indicate that HDC is tightly associated with the ER membrane with its carboxyl terminal region exposed on the cytosolic side.
    Inflammation Research 06/2006; 55(5):185-91. · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that IgE-mediated activation of mast cells occurs even in the absence of antigen, which is referred to as "monomeric IgE" responses. Although monomeric IgE was found to induce a wide variety of responses, such as up-regulation of the FcepsilonRI, survival, cytokine production, histamine synthesis, and adhesion to fibronectin, it remains to be clarified how mast cells are activated in the absence of antigen. It has been controversial whether monomeric IgE responses are mediated by a similar signaling mechanism to antigen stimulation, although recent studies suggest that IgE can induce the FcepsilonRI aggregation even in the absence of antigen. In this study, we focused on the role of conventional protein kinase C (cPKC), since this response is suppressed by a specific inhibitor for cPKC. Monomeric IgE-induced Ca(2+) influx was not observed in a mouse mastocytoma cell line, which lacks the expression of PKCbetaII, although Ca(2+) influx induced by cross-linking of the FcepsilonRI was intact. Transfection of PKCbetaII cDNA was found to restore the Ca(2+) influx induced by monomeric IgE in this cell line. Furthermore, the dominant negative form of PKCbetaII (PKCbetaII/T500V) significantly suppressed the Ca(2+) influx, histamine synthesis, and interleukin-6 production in another mouse mast cell line, which is highly sensitive to monomeric IgE. Expression of PKCbetaII/T500V was found not to affect the antigen-induced responses. These results suggest that PKCbetaII plays a critical role in monomeric IgE responses, but not in antigen responses.
    Journal of Biological Chemistry 12/2005; 280(47):38976-81. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that histamine is involved in the modulation of cytokine expression patterns. We previously reported that daily treatment with the H(2) receptor antagonist, cimetidine, suppressed tumor growth through alteration of the local cytokine expression pattern. In this study, we used a mouse strain genetically lacking histidine decarboxylase (HDC), to evaluate the role of endogenous histamine synthesis on cytokine expression and tumor development. In the mutant mice, cimetidine had no effect on tumor growth, whereas an H(2) agonist, dimaprit, significantly enhanced tumor growth. When the HDC-deficient mice were implanted with mutant CT-26 cells stably expressing HDC, drastic suppression of tumor growth by cimetidine was observed, which was accompanied by augmentation of mRNA expression of LT-beta, TNF-alpha, and IFN-gamma in the tumor tissues. These results suggest that endogenous histamine synthesis in tumor tissues suppresses local tumor immunity via the H(2) receptors, resulting in tumor growth promotion.
    Biochemical and Biophysical Research Communications 11/2002; 297(5):1205-10. · 2.28 Impact Factor

Publication Stats

54 Citations
30.82 Total Impact Points

Institutions

  • 2005–2013
    • Kyoto University
      • • Division of Pharmaceutical Sciences
      • • Graduate School of Pharmaceutical Sciences / Faculty of Pharmaceutical Sciences
      Kyoto, Kyoto-fu, Japan
  • 2009
    • Mukogawa Women's University
      • School of Pharmacy and Pharmaceutical Sciences
      Nishinomiya, Hyogo-ken, Japan