Nabiha Yusuf

University of Alabama at Birmingham, Birmingham, Alabama, United States

Are you Nabiha Yusuf?

Claim your profile

Publications (29)94.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D signaling plays a key role in various important processes, including cellular proliferation, differentiation, and apoptosis, immune regulation, hormone secretion, and skeletal health. Further, vitamin D production and supplementation have been shown to exert protective effects via an unknown signaling mechanism involving the vitamin D receptor (VDR) in several diseases and cancer types, including skin cancer. With over 3.5 million new diagnoses in 2 million patients annually, skin cancer is the most common cancer type in the United States. While ultraviolet B (UVB) radiation is the main etiologic factor for non-melanoma skin cancer (NMSC), UVB also induces cutaneous vitamin D production. This paradox has been the subject of contradictory findings in the literature in regards to amount of sun exposure necessary for appropriate vitamin D production, as well as any beneficial or detrimental effects of vitamin D supplementation for disease prevention. Further clinical and epidemiological studies are necessary to elucidate the role of vitamin D in skin carcinogenesis.This article is protected by copyright. All rights reserved.
    Photochemistry and Photobiology 11/2014; · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet radiation (UVR) induces immunosuppression and is a major factor for development of skin cancer. Numerous efforts have been made to determine mechanisms for UVR induced immunosuppression and to develop strategies for prevention and treatment of UVR induced cancers. In the current study, we use IL-17 receptor (IL-17R) deficient mice to examine whether IL-17 mediated responses have a role in UVB (290-320) induced immunosuppression of contact hypersensitivity responses. Results demonstrate that IL-17 mediated responses are required for UVB induced immunosuppression of contact hypersensitivity responses. The systemic immune suppression and development of regulatory T cells are inhibited in UVB treated IL-17R deficient mice compared to wild type animals. The deficiency in IL-17R inhibits the infiltration and development of a tolerogenic myeloid cell population in UVB treated skin, which expresses CD11b and Gr-1 and produces reactive oxygen species. We speculate that the development of the tolerogenic myeloid cells is dependent on IL-17 induced chemokines and inflammatory mediators in UVB treated skin. The inhibition of the tolerogenic myeloid cells may be attributed to the suppression of regulatory T cells in UVR treated IL-17R-/- mice. The findings may be exploited to new strategies for prevention and treatment of UVR induced skin diseases and cancers.This article is protected by copyright. All rights reserved.
    Photochemistry and Photobiology 09/2014; · 2.29 Impact Factor
  • Source
    Erin M Burns, Nabiha Yusuf
    Frontiers in Immunology 01/2014; 5:135.
  • Nabiha Yusuf
    Frontiers in Immunology 01/2014; 5:224.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet A (UVA) radiation contributes to skin photoaging. Baicalin, a plant-derived flavonoid, effectively absorbs UV rays and has been shown to have anti-oxidant and anti-inflammatory properties that may delay the photoaging process. In the current study, cultured human skin fibroblasts were incubated with 50 μg/ml baicalin 24 hours prior to 10 J/cm(2) UVA irradiation. In order to examine the efficacy of baicalin treatment in delaying UVA-induced photoaging, we investigated aging-related markers, cell cycle changes, anti-oxidant activity, telomere length, and DNA damage markers. UVA radiation caused an increased proportion of β-Gal positive cells and reduced telomere length in human skin fibroblasts. In addition, UVA radiation inhibited TGF-β1 secretion, induced G1 phase arrest, reduced SOD and GSH-Px levels, increased MDA levels, enhanced the expression of MMP-1, TIMP-1, p66, p53, and p16 mRNA, reduced c-myc mRNA expression, elevated p53 and p16 protein expression, and reduced c-myc protein expression. Baicalin treatment effectively protected human fibroblasts from these UVA radiation-induced aging responses, suggesting that the underlying mechanism involves the inhibition of oxidative damage and regulation of the expression of senescence-related genes, including those encoding for p53, p66(Shc) and p16.
    The American Journal of Chinese Medicine 01/2014; 42(3):709-27. · 2.28 Impact Factor
  • Source
    Aimen Ismail, Nabiha Yusuf
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferons (IFNs) are a family of naturally existing glycoproteins known for their antiviral activity and their ability to influence the behavior of normal and transformed cell types. Type I Interferons include IFN- α and IFN- β . Currently, IFN- α has numerous approved antitumor applications, including malignant melanoma, in which IFN- α has been shown to increase relapse free survival. Moreover, IFN- α has been successfully used in the intralesional treatment of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In spite of these promising clinical results; however, there exists a paucity of knowledge on the precise anti-tumor action of IFN- α / β at the cellular and molecular levels in cutaneous malignancies such as SCC, BCC, and melanoma. This review summarizes current knowledge on the extent to which Type I IFN influences proliferation, apoptosis, angiogenesis, and immune function in normal skin, cutaneous SCC, BCC, and melanoma.
    Dermatology Research and Practice 01/2014; 2014:847545.
  • [Show abstract] [Hide abstract]
    ABSTRACT: UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4(-/-)) and TLR4 competent (TLR4(+/+)) mice were subjected to 90 mJ/cm(2) UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4(-/-) mice in comparison to TLR4(+/+) mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4(+/+) mice than TLR4(-/-) mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4(-/-) mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (P<0.05) than BMDC from TLR4(+/+) mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4(-/-) mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4(+/+) BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer.Journal of Investigative Dermatology accepted article preview online, 10 December 2013. doi:10.1038/jid.2013.530.
    Journal of Investigative Dermatology 12/2013; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-ispropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in control and prevention of metastatic melanoma.
    Toxicology and Applied Pharmacology 04/2013; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon powders can be synthesized using variety of CVD and detonation methods. Several interesting properties of carbon powder particles make them a very attractive material examined in many laboratories all over the world. However there is a lack of information discussing investigation of carbon powders directed to its application in pharmaceutical-cosmetic industry and medicine. Earlier investigation results proved that diamond powders present properties fighting free radicals. Presented work discusses the influence of carbon powder particles manufactured using MW/RF PACVD, RF PACVD and detonation methods onto hydro-lipid skin coat. Before the biological examinations physicochemical properties of carbon powders were determined. Grain size, shape and chemical composition of carbon powders were determined using the scanning electron microscopy. Surface functional groups were characterized by IR Fourier-transform spectroscopy and X-ray photoelectron spectroscopy. Structure and phase composition were investigated by means of the Raman spectroscopy. Results of allergy tests performed on laboratory mice proved that carbon powder particles synthesized using different methods do not cause allergy. In the following stage, the group of 20 patients applied the formula including carbon powder on their face skin. The influence of carbon powder onto hydro-lipid skin coat was determined by measurement of such parameters as: pH reaction, skin temperature, lipid fotometry and level of hydration. Additionally, macro pictures of places where the cream had been applied were registered. As the result of the investigation it was found that powders synthesized using various methods present different physicochemical properties which may individually affect the face skin parameters. The noticeable improvement of hydro-lipid skin coat kilter was observed.
    Journal of Nanoscience and Nanotechnology 12/2012; 12(12):9037-46. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaysian tualang honey possesses strong antioxidant and anti-inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm(-2) ) irradiation. We found that the treatment of tualang honey inhibited UVB-induced DNA damage, and enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers and 8-oxo-7,8-dihydro-2'-deoxyguanosine. Treatment of tualang honey inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB-induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB-induced COX-2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.
    Photochemistry and Photobiology 01/2012; 88(5):1198-204. · 2.29 Impact Factor
  • Source
    Debika Bhattacharya, Nabiha Yusuf
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer remains a major cause of death in women in the developed world. As Toll-like receptors (TLRs) are widely expressed on tumor cells and play important roles in the initiation and progression of cancer, they may thus serve as important targets and have an effective perspective on breast cancer treatment. Expression of TLRs on breast cancer cells and mononuclear inflammatory cells can promote inflammation and cell survival in the tumor microenvironment. Inflammation and cancer are related. It is well known that persistent inflammatory conditions can induce cancer formation, due to production of cytokines and chemokines, which play a crucial role in promoting angiogenesis, metastasis, and subversion of adaptive immunity. TLR signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. This paper delineates the expression of various TLRs in promotion of inflammation and development of mammary tumors. Understanding the mechanisms through which TLRs on breast cancer cells and inflammatory cells regulate growth, survival, and metastatic progression can make them potential targets for breast cancer therapy.
    International journal of breast cancer. 01/2012; 2012:716564.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism for inflammation associated tumor development is a central issue for tumor biology and immunology and remains to be fully elucidated. Although IL-17 is implicated in association with inflammation mediated carcinogenesis, mechanisms are largely elusive. In the current studies, we showed that IL-17 receptor-A gene deficient (IL-17R-/-) mice were resistant to chemical carcinogen-induced cutaneous carcinogenesis, a well-established inflammation associated tumor model in the skin. The deficiency in IL-17R increased the infiltration of CD8+ T cells whereas it inhibited the infiltration of CD11b+ myeloid cells and development of myeloid derived suppressor cells. Inflammation induced skin hyperplasia and production of pro-tumor inflammatory molecules were inhibited in IL-17R-/- mice. We found that pre-existing inflammation in the skin increased the susceptibility to tumor growth, which was associated with increased development of tumor specific IL-17 producing T cells. This inflammation induced susceptibility to tumor growth was abrogated in IL-17R-/- mice. Finally, neutralizing IL-17 in mice that had already developed chemical carcinogen induced skin tumors could inhibit inflammation mediated tumor progression at late stages. These results demonstrate that IL-17 mediated inflammation is an important mechanism for inflammation mediated promotion of tumor development. The study has major implications for targeting IL-17 in prevention and treatment of tumors.
    PLoS ONE 01/2012; 7(2):e32126. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we have investigated the chemotherapeutic potential of a purple violet pigment (PVP), which was isolated from a previously undescribed Antarctic Janthinobacterium sp. (Ant5-2), against murine UV-induced 2237 fibrosarcoma and B16F10 melanoma cells. The 2237, B16F10, C50, and NIH3T3 cells were treated with PVP at different doses and for different times, and their proliferation and viability were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle arrest induced by PVP in 2237 fibrosarcoma cells was assessed by flow cytometry and expression analysis of cell cycle regulatory proteins were done by Western blot. Apoptosis induced by PVP in 2237 cells was observed by annexin-V/propidium iodide double staining flow cytometry assay and fluorescence microscopy. To further determine the molecular mechanism of apoptosis induced by PVP, the changes in expression of Bcl-2, Bax and cytochrome c were detected by Western blot. The loss of mitochondrial membrane potential in PVP treated 2237 cells was assessed by staining with JC-1 dye following flow cytometry. Caspase-3, Caspase-9 and PARP cleavage were analyzed by Western blot and Caspase-3 and -9 activities were measured by colorimetric assays. In vitro treatment of murine 2237 cells with the PVP resulted in decreased cell viability (13-79%) in a time (24-72 h) and dose (0.1-1 μM)-dependent manner. The PVP-induced growth inhibition in 2237 cells was associated with both G0/G1 and G2/M phase arrest accompanied with decrease in the expression of cyclin dependent kinases (Cdks) and simultaneous increase in the expression of cyclin dependent kinase inhibitors (Cdki) - Cip1/p21 and Kip1/p27. Further, we observed a significant increase in the apoptosis of the 2237 fibrosarcoma cells which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2, disruption of mitochondrial membrane potential, cytochrome c release, activation of caspase-3, caspase-9 and poly-ADP-ribose-polymerase (PARP) cleavage. We describe the anti-cancer mechanism of the PVP for the first time from an Antarctic bacterium and suggest that the PVP could be used as a potent chemotherapeutic agent against nonmelanoma skin cancers.
    International journal of dermatology 07/2011; 50(10):1223-33. · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) activate signals that are critically involved in the initiation of adaptive immune responses and many tumorigenic chemicals have been associated with activation of those pathways. To determine the role of TLR-4 (TLR4) in mammary carcinogenesis, we subjected TLR4 deficient and wild type (WT) mice to oral gavage with carcinogenic polyaromatic hydrocarbon 7,12-dimethylbenz(a)anthracene (DMBA). TLR4 deficient mice developed more tumors relative to the WT mice. T cells of TLR4 deficient mice produced elevated levels of IL-17 and lower levels of IFN-γ relative to WT mice. IL-12 secreted by CD11c(+) cells was higher in WT mice, whereas greater amounts of IL-23 were produced by CD11c(+) cells from TLR4 deficient mice. Moreover, there was higher incidence of regulatory T cells in TLR4 deficient mice than WT mice. Similarly, various markers of angiogenesis [matrix metalloproteinases (MMP)-2 and MMP-9, CD31 and vascular endothelial growth factor] were highly expressed in tumors from TLR4 deficient mice than WT mice. The results of this study indicate that TLR4 plays an important role in the prevention of DMBA induced mouse mammary tumorigenesis and efforts to divert the cell-mediated immune response may, therefore, prove to be beneficial in the prevention of mammary tumors.
    International Journal of Cancer 03/2011; 130(4):765-74. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: UVB radiation is a potent immunosuppressive agent that inhibits cell-mediated immune responses. The mechanisms by which UVB radiation influences cell-mediated immune responses have been the subject of extensive investigation. However, the role of innate immunity on photoimmunological processes has received little attention. The purpose of this study was to determine whether Toll-like receptor-4 (TLR4) contributed to UV-induced suppression of contact hypersensitivity (CHS) responses. TLR4⁻/⁻ and wild type C57BL/6 (TLR4+/+) mice were subjected to a local UVB immunosuppression regimen consisting of 100 mJ/cm² UVB radiation followed by sensitization with the hapten DNFB. Wild type TLR4+/+ mice exhibited significant suppression of contact hypersensitivity response, whereas TLR4⁻/⁻ developed significantly less suppression. The suppression in wild type TLR4+/+ mice could be adoptively transferred to naïve syngeneic recipients. Moreover, there were significantly fewer Foxp3 expressing CD4+CD25+ regulatory T-cells in the draining lymph nodes of UV-irradiated TLR4⁻/⁻ mice than TLR4+/+ mice. When cytokine levels were compared in these two strains after UVB exposure, T-cells from TLR4+/+ mice produced higher levels of IL-10 and TGF-β and lower levels of IFN-γ and IL-17. Strategies to inhibit TLR4 may allow us to develop immunopreventive and immunotherapeutic approaches for management of UVB induced cutaneous immunosuppression.
    Archives of Biochemistry and Biophysics 01/2011; 508(2):171-7. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tea, a popular beverage with its origins in southeast Asia, generally refers to an infusion derived from processed leaves, leaf buds, and internodes of the plant Camellia sinensis. There are four types of C. sinensis teas commonly available on the market – black, oolong, green, and white – which differ in their modes of processing, and in the case of white tea, maturity. (“Red tea” generally refers to an infusion derived from the South African Rooibos plant.) Green tea is produced from fresh leaves of the plant; unlike the black and oolong varieties, green tea is derived from fresh C. sinensis leaves that are steamed and dried at high temperatures before any oxidation and polymerization of polyphenolic compounds has taken place.
    12/2010: pages 71-83;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV) radiation, in particular the midwavelength range (UVB; 290-320 nm), is one of the most significant risk factors for the development of nonmelanoma skin cancer. UVB radiation-induced immunosuppression, which occurs in both humans and laboratory animals, contributes to their pathogenesis. However, there are conflicting reports on the relative role of CD4(+) and CD8(+) T cells in UVB induced skin cancer. The purpose of this study was to delineate the contribution of these two cell subpopulations to UVB induced immunosuppression and tumor development using C3H/HeN (WT), CD4 knockout (CD4(-/-) ) and CD8 knockout (CD8(-/-) ) mice. We observed that UVB induced skin carcinogenesis was retarded in terms of number of tumors per group, tumor volume and percentage of mice with tumors, in mice deficient in CD4(+) T cells compared with wild-type mice, whereas significantly greater (P < 0.05) numbers of tumors occurred in CD8(-/-) mice. These results indicate that, CD4(+) T cells promote tumor development while CD8(+) T cells have the opposite effect. Further, we found that CD4(+) T cells from tumor-bearing mice produced interleukin (IL)-4, IL-10, and IL-17 whereas CD8(+) T cells produced interferon-γ. Manipulation of T-cell subpopulations that are induced by UVB radiation could be a means of preventing skin cancers caused by this agent.
    Photochemistry and Photobiology 11/2010; 87(2):387-98. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of immune responses in tumor development is a central issue for tumor biology and immunology. IL-17 is an important cytokine for inflammatory and autoimmune diseases. Although IL-17-producing cells are detected in cancer patients and tumor-bearing mice, the role of IL-17 in tumor development is controversial, and mechanisms remain to be fully elucidated. In the current study, we found that the development of tumors was inhibited in IL-17R-deficient mice. A defect in IFN-gammaR increased tumor growth, whereas tumor growth was inhibited in mice that were deficient in both IL-17R and IFN-gammaR compared with wild-type animals. Further experiments showed that neutralization of IL-17 by Abs inhibited tumor growth in wild-type mice, whereas systemic administration of IL-17 promoted tumor growth. The IL-17R deficiency increased CD8 T cell infiltration, whereas it reduced the infiltration of myeloid-derived suppressor cells (MDSCs) in tumors. In contrast, administration of IL-17 inhibited CD8 T cell infiltration and increased MDSCs in tumors. Further analysis indicated that IL-17 was required for the development and tumor-promoting activity of MDSCs in tumor-bearing mice. These data demonstrate that IL-17-mediated responses promote tumor development through the induction of tumor-promoting microenvironments at tumor sites. IL-17-mediated regulation of MDSCs is a primary mechanism for its tumor-promoting effects. The study provides novel insights into the role of IL-17 in tumor development and has major implications for targeting IL-17 in treatment of tumors.
    The Journal of Immunology 03/2010; 184(5):2281-8. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-12 deficiency exacerbates tumorigenesis in ultraviolet (UV) radiation-induced skin. Here, we assessed the effects of IL-12 deficiency on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated mouse skin. Using this two-stage chemical carcinogenesis protocol, we found that the development of DMBA/TPA-induced skin tumors was diminished in IL-12p40-knockout mice than in their wild-type counterparts. At the termination of the experiment (at 24 weeks), the skin tumor incidence and tumor multiplicity were significantly lower (P < 0.005) in interleukin-12-knockout (IL-12 KO) mice than in their wild-type counterparts, as was the malignant transformation of DMBA/TPA-induced papillomas to carcinomas (P < 0.01). Analysis of samples collected at the termination of the experiments for biomarkers of inflammation by immunohistochemical analysis, western blotting, enzyme-linked immunosorbent assay and real-time polymerase chain reaction revealed significantly lower levels of cyclooxygenase-2 (COX-2), prostaglandin (PG) E(2), proliferating cell nuclear antigen, cyclin D1 and the proinflammatory cytokines (tumor necrosis factor-alpha, IL-1beta and IL-6) in the DMBA/TPA-treated tumors and tumor-uninvolved skin of IL-12 KO mice than the skin and tumors of DMBA/TPA-treated wild-type mice. Analysis of the skin 6 h after TPA treatment showed that the TPA-induced promotion of skin edema, inflammatory leukocyte infiltration, COX-2 expression and PGE(2) production was significantly lower in the skin of the IL-12-KO mice than their wild-type counterparts. These results indicate that DMBA/TPA-induced skin tumor development differs from UVB-induced skin tumor development in that endogenous IL-12 acts to inhibit UVB-induced skin tumor development and malignant progression of the skin tumors to carcinoma. In the case of DMBA/TPA-induced skin tumor development, the endogenous IL-12 modulates the tumor promoter stimulation of inflammatory responses.
    Carcinogenesis 09/2009; 30(11):1970-7. · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) activate signals that are critically involved in innate immune responses and that contribute to the initiation of adaptive immune responses. Resveratrol (trans-3,5,4-trihydroxystilbene), a polyphenol found in red grapes and in several other plant sources, is an effective chemopreventive agent in cutaneous chemical carcinogenesis. In this study, we investigated whether TLR4 was required for the chemopreventive action of resveratrol in DMBA skin carcinogenesis. For this purpose, mice with normal and deficient TLR4 function were compared when pretreated with resveratrol and then subjected to a DMBA-induced skin carcinogenesis protocol. There were fewer tumors/group (P < 0.001) in resveratrol treated TLR4 competent C3H/HeN mice than in TLR4 deficient C3H/HeJ mice. In addition, the size of tumors in C3H/HeN mice was reduced in vivo and their survival in vitro was inhibited by resveratrol to a significantly greater extent than in C3H/HeJ mice. Resveratrol inhibited angiogenesis to a much greater extent in the TLR4 competent mice than in TLR4 deficient mice. IFN-gamma and IL-12 levels were also increased in TLR4 competent mice compared to TLR4 deficient mice, and TLR4 competent C3H/HeN mice exhibited a greater increase in the cell-mediated immune response to DMBA. The results of this study indicate that TLR4 is an important mediator of resveratrol chemoprevention in DMBA skin tumorigenesis.
    Molecular Carcinogenesis 02/2009; 48(8):713-23. · 4.27 Impact Factor