John Hardy

University College London, Londinium, England, United Kingdom

Are you John Hardy?

Claim your profile

Publications (596)5283.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder which predominantly affects the motor neurons in the brain and spinal cord. The death of the motor neurons in ALS causes subsequent muscle atrophy, paralysis and eventual death. Clinical and biological evidence now demonstrates that ALS has many similarities to prion disease in terms of disease onset, phenotype variability and progressive spread. The pathognomonic ubiquitinated inclusions deposited in the neurons and glial cells in brains and spinal cords of patients with ALS and FTLD-U contain aggregated TDP-43 protein, and evidence now suggests that TDP-43 has cellular prion-like properties. The cellular mechanisms of prion protein misfolding and aggregation are thought to be responsible for the characteristics of prion disease. Therefore, there is a strong mechanistic basis for a prion-like behaviour of the TDP-43 protein being responsible for some characteristics of ALS. In this review, we compare the prion-like mechanisms of TDP-43 to the clinical and biological nature of ALS in order to investigate how this protein could be responsible for some of the characteristic properties of the disease. This article is protected by copyright. All rights reserved.
    Neuropathology and Applied Neurobiology 12/2014; 41(5). DOI:10.1111/nan.12206 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, mutations in the TUBB4A gene have been found to underlie hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) syndrome, a rare neurodegenerative disorder of infancy and childhood. TUBB4A mutations also have been described as causative of DYT4 (“hereditary whispering dysphonia”). However, in DYT4, brain imaging has been reported to be normal and, therefore, H-ABC syndrome and DYT4 have been construed to be different disorders, despite some phenotypic overlap. Hence, the question of whether these disorders reflect variable expressivity or pleiotropy of TUBB4A mutations has been raised. We report four unrelated patients with imaging findings either partially or totally consistent with H-ABC syndrome, who were found to have TUBB4A mutations. All four subjects had a relatively homogenous phenotype characterized by severe generalized dystonia with superimposed pyramidal and cerebellar signs, and also bulbar involvement leading to complete aphonia and swallowing difficulties, even though one of the cases had an intermediate phenotype between H-ABC syndrome and DYT4. Genetic analysis of the TUBB4A gene showed one previously described and two novel mutations (c.941C>T; p.Ala314Val and c.900G>T; p.Met300Ile) in the exon 4 of the gene. While expanding the genetic spectrum of H-ABC syndrome, we confirm its radiological heterogeneity and demonstrate that phenotypic overlap with DYT4. Moreover, reappraisal of previously reported cases would also argue against pleiotropy of TUBB4A mutations. We therefore suggest that H-ABC and DYT4 belong to a continuous phenotypic spectrum associated with TUBB4A mutations. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 12/2014; 30(6). DOI:10.1002/mds.26129 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement–based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 12/2014; 30(3). DOI:10.1002/mds.26113 · 5.68 Impact Factor
  • Source

    Brain 11/2014; 138(5). DOI:10.1093/brain/awu309 · 9.20 Impact Factor
  • Source

    Neurobiology of Aging 11/2014; 35(11):2659. DOI:10.1016/j.neurobiolaging.2014.06.017 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Early onset isolated dystonia (DYT1) is linked to a three base pair deletion (ΔGAG) mutation in the TOR1A gene. Clinical manifestation includes intermittent muscle contraction leading to twisting movements or abnormal postures. Neuropathological studies on DYT1 cases are limited, most showing no significant abnormalities. In one study, brainstem intraneuronal inclusions immunoreactive for ubiquitin, torsinA and lamin A/C were described. Using the largest series reported to date comprising 7 DYT1 cases, we aimed to identify consistent neuropathological features in the disease and determine whether we would find the same intraneuronal inclusions as previously reported. Result The pathological changes of brainstem inclusions reported in DYT1 dystonia were not replicated in our case series. Other anatomical regions implicated in dystonia showed no disease-specific pathological intracellular inclusions or evidence of more than mild neuronal loss. Conclusion Our findings suggest that the intracellular inclusions described previously in DYT1 dystonia may not be a hallmark feature of the disorder. In isolated dystonia, DYT1 in particular, biochemical changes may be more relevant than the morphological changes. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0159-x) contains supplementary material, which is available to authorized users.
    10/2014; 2(1). DOI:10.1186/s40478-014-0159-x
  • Source
    Rita Guerreiro · John Hardy ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The analyses of genetic factors contributing to Alzheimer's disease (AD) and other dementias have evolved at the same pace as genetic and genomic technologies are developed and improved. The identification of the first genes involved in AD arose from family-based studies, but risk factors have mainly been identified by studies comparing groups of patients with groups of controls. The best outcomes have been heavily associated with the capacity of interrogating genetic variability at the genome level without any particular a priori hypothesis. In this review we assess the role of genetic family studies in Alzheimer's disease and other dementias within the current status of dementias' and, particularly, AD's genetic architecture.
    Neurotherapeutics 10/2014; 11(4):732-737. DOI:10.1007/s13311-014-0295-9 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-onset Alzheimer's disease (EOAD) represents 1%–2% of the Alzheimer's disease (AD) cases, and it is generally characterized by a positive family history and a rapidly progressive symptomatology. Rare coding and fully penetrant variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the only causative mutations reported for autosomal dominant AD. Thus, in this study we used exome sequencing data to rapidly screen rare coding variability in APP, PSEN1, and PSEN2, in a British cohort composed of 47 unrelated EOAD cases and 179 elderly controls, neuropathologically proven. We report 2 novel and likely pathogenic variants in PSEN1 (p.L166V and p.S230R). A comprehensive catalog of rare pathogenic variants in the AD Mendelian genes is pivotal for a premortem diagnosis of autosomal dominant EOAD and for the differential diagnosis with other early onset dementias such as frontotemporal dementia (FTD) and Creutzfeldt-Jakob disease (CJD).
    Neurobiology of Aging 10/2014; 35(10):2422.e13–2422.e16. DOI:10.1016/j.neurobiolaging.2014.04.026 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because APOE locus variants contribute to risk of late-onset Alzheimer disease (LOAD) and to differences in age at onset (AAO), it is important to know whether other established LOAD risk loci also affect AAO in affected participants.
    JAMA Neurology 09/2014; DOI:10.1001/jamaneurol.2014.1491 · 7.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([123I]N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.
    Brain 09/2014; 137(9):2480-2492. DOI:10.1093/brain/awu179 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.
    PLoS Genetics 09/2014; 10(9):e1004606. DOI:10.1371/journal.pgen.1004606 · 7.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.
    Nature Neuroscience 08/2014; 17(10). DOI:10.1038/nn.3801 · 16.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. Method: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. Results: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). Conclusions: Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.
    American Journal of Psychiatry 08/2014; 172(1). DOI:10.1176/appi.ajp.2014.13101306 · 12.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SQSTM1 mutations, coding for the p62 protein, were identified as a monogenic cause of Paget disease of bone and of amyotrophic lateral sclerosis. More recently, SQSTM1 mutations were identified in few families with frontotemporal dementia. We report a new family carrying SQSTM1 mutation and presenting with a clinical phenotype of speech apraxia or atypical behavioral disorders, associated with early visuo-contructional deficits. This study further supports the implication of SQSTM1 in frontotemporal dementia, and enlarges the phenotypic spectrum associated with SQSTM1 mutations.
    Journal of Alzheimer's disease: JAD 08/2014; 43(2). DOI:10.3233/JAD-141512 · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and accessible technology. Central to this project, we wanted to make the content of the platform open to any investigator without restriction. In designing this array we prioritized a number of types of genetic variability for inclusion, such as known risk alleles, disease-causing mutations, putative risk alleles, and other functionally important variants. The array was primarily designed to allow rapid screening of samples for disease-causing mutations and large population studies of risk factors. Notably, an explicit aim was to make this array widely available to facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom content variants focusing on neurologic diseases. Data are generated at approximately $50-$60 per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the utility of NeuroX in the analyses of rare and common risk variants, and present quality control metrics and a brief primer for the analysis of NeuroX derived data. Copyright © 2014. Published by Elsevier Inc.
    Neurobiology of aging 08/2014; 36(3). DOI:10.1016/j.neurobiolaging.2014.07.028 · 5.01 Impact Factor
  • Roberto Erro · Kailash P Bhatia · John Hardy ·

    JAMA Neurology 08/2014; 71(8):1052-1053. DOI:10.1001/jamaneurol.2014.1506 · 7.42 Impact Factor
  • Source

  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance α-Synuclein (SNCA) locus duplications are associated with variable clinical features and reduced penetrance but the reasons underlying this variability are unknown.Objectives To report a novel family carrying a heterozygous 6.4 Mb duplication of the SNCA locus with an atypical clinical presentation strongly reminiscent of frontotemporal dementia and late-onset pallidopyramidal syndromes and study phenotype-genotype correlations in SNCA locus duplications.Design, Setting, and Participants We report the clinical and neuropathologic features of a family carrying a 6.4 Mb duplication of the SNCA locus. To identify candidate disease modifiers, we completed a genetic analysis of the family and conducted statistical analysis on previously published cases carrying SNCA locus duplications using regression modeling with robust standard errors to account for clustering at the family level.Main Outcomes and Measures We assessed whether length of the SNCA locus duplication influences disease penetrance and severity and whether extraduplication factors have a disease-modifying role.Results We identified a large 6.4 Mb duplication of the SNCA locus in this family. Neuropathological analysis showed extensive α-synuclein pathology with minimal phospho-tau pathology. Genetic analysis showed an increased burden of Parkinson disease–related risk factors and the disease-predisposing H1/H1 microtubule-associated protein tau haplotype. Statistical analysis of previously published cases suggested there is a trend toward increasing disease severity and disease penetrance with increasing duplication size. The corresponding odds ratios from the univariable analyses were 1.17 (95% CI, 0.81-1.68) and 1.34 (95% CI, 0.78-2.31), respectively. Sex was significantly associated with both disease risk and severity; men compared with women had increased disease risk and severity and the corresponding odds ratios from the univariable analyses were 8.36 (95% CI, 1.97-35.42) and 5.55 (95% CI, 1.39-22.22), respectively.Conclusions and Relevance These findings further expand the phenotypic spectrum of SNCA locus duplications. Increased dosage of genes located within the duplicated region probably cannot increase disease risk and disease severity without the contribution of additional risk factors. Identification of disease modifiers accounting for the substantial phenotypic heterogeneity of patients with SNCA locus duplications could provide insight into molecular events involved in α-synuclein aggregation.
    JAMA Neurology 07/2014; 71(9). DOI:10.1001/jamaneurol.2014.994 · 7.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to Nasu-Hakola disease, Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and FTD-like syndrome without bone involvement. TREM2 is an innate immune receptor preferentially expressed by microglia and is involved in inflammation and phagocytosis. Whether and how TREM2 missense mutations affect TREM2 function is unclear. We report that missense mutations associated with FTD and FTD-like syndrome reduce TREM2 maturation, abolish shedding by ADAM proteases, and impair the phagocytic activity of TREM2-expressing cells. As a consequence of reduced shedding, TREM2 is virtually absent in the cerebrospinal fluid (CSF) and plasma of a patient with FTD-like syndrome. A decrease in soluble TREM2 was also observed in the CSF of patients with AD and FTD, further suggesting that reduced TREM2 function may contribute to increased risk for two neurodegenerative disorders.
    Science translational medicine 07/2014; 6(243). DOI:10.1126/scitranslmed.3009093 · 15.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. METHODS: We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10(-8)) single-nucleotide polymorphisms. FINDINGS: We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10(-8)). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1·05 × 10(-8); odds ratio=1·204 [95% CI 1·11-1·30]), rs9268856 (p=5·51 × 10(-9); 0·809 [0·76-0·86]) and rs1980493 (p value=1·57 × 10(-8), 0·775 [0·69-0·86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10(-7); 0·814 [0·71-0·92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. INTERPRETATION: Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD
    The Lancet Neurology 07/2014; 3(7):686-99. DOI:10.1016/S1474-4422(14)70065-1 · 21.90 Impact Factor

Publication Stats

45k Citations
5,283.68 Total Impact Points


  • 2008-2015
    • University College London
      • Department of Molecular Neuroscience
      Londinium, England, United Kingdom
    • London Research Institute
      Londinium, England, United Kingdom
    • University of Miami Miller School of Medicine
      • Department of Psychiatry and Behavioral Sciences
      Miami, Florida, United States
  • 2007-2015
    • UCL Eastman Dental Institute
      Londinium, England, United Kingdom
    • Duke University
      Durham, North Carolina, United States
  • 2011-2014
    • WWF United Kingdom
      Londinium, England, United Kingdom
  • 2013
    • L'Institut du Cerveau et de la Moelle Épinière
      Lutetia Parisorum, Île-de-France, France
    • University of Campinas
      Conceição de Campinas, São Paulo, Brazil
  • 2012
    • University Medical Center Utrecht
      Utrecht, Utrecht, Netherlands
    • Banner Alzheimer's Institute
      Phoenix, Arizona, United States
    • Cardiff University
      • School of Medicine
      Cardiff, Wales, United Kingdom
  • 2002-2011
    • National Institute on Aging
      • Laboratory of Neurogenetics (LNG)
      Baltimore, Maryland, United States
  • 2002-2009
    • National Institutes of Health
      • Laboratory of Neurogenetics
      Maryland, United States
  • 1992-2009
    • University of South Florida
      • Morsani College of Medicine
      Tampa, Florida, United States
  • 2001-2008
    • University of Helsinki
      • Department of Pathology
      Helsinki, Uusimaa, Finland
    • University of Wales
      • College of Medicine
      Cardiff, Wales, United Kingdom
  • 2004
    • William Penn University
      Filadelfia, Pennsylvania, United States
    • Chang Gung University
      Hsin-chu-hsien, Taiwan, Taiwan
    • Hospital Universitario Fundacion Alcorcon
      Madrid, Madrid, Spain
  • 1997-2003
    • Mayo Foundation for Medical Education and Research
      • Department of Neurology
      Scottsdale, AZ, United States
  • 1996-2002
    • Washington University in St. Louis
      • Department of Psychiatry
      San Luis, Missouri, United States
  • 1998
    • Columbia University
      • Department of Neurology
      New York City, New York, United States
  • 1994
    • University of Essex
      Colchester, England, United Kingdom
  • 1991
    • University of Antwerp
      Antwerpen, Flanders, Belgium
  • 1990-1991
    • Imperial College Healthcare NHS Trust
      Londinium, England, United Kingdom