R L Hughson

University of Waterloo, Ватерлоо, Ontario, Canada

Are you R L Hughson?

Claim your profile

Publications (238)648.62 Total impact

  • I. Brar · R.L. Hughson · A.D. Robertson ·

    The Canadian journal of cardiology 10/2015; 31(10):S52-S53. DOI:10.1016/j.cjca.2015.07.124 · 3.94 Impact Factor
  • I Brar · A D Robertson · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: South Asians (SA) suffer from a higher burden of heart disease and stroke compared with White Caucasians (CA). We hypothesized that increased arterial stiffness in older adults of SA origin would be associated with greater cerebrovascular pulsatile pressure and flow characteristics compared with CA older adults. Forty-four SA and CA older adults, free of known cardiovascular and cerebrovascular diseases, were assessed. Vascular ageing was characterized by brachial-ankle pulse wave velocity, carotid pulse pressure, compliance coefficient (CC) and intima-media thickness (IMT). Duplex ultrasonography of the internal carotid arteries estimated anterior cerebral blood flow (aCBF) and cerebrovascular resistance (aCVR), and transcranial Doppler ultrasound quantified middle cerebral artery blood flow velocity, resistive index (RI) and pulsatility index (PI). Fasting blood samples were collected to assess glycaemic status, lipid profile and C-reactive protein. SA had higher carotid pulse pressure and lower CC indicating stiffer arteries compared with CA. Multiple regression analyses revealed that ethnic differences in arterial stiffness were associated with glycated haemoglobin level in SA. Among SA, an inverse association was observed between carotid CC and aCVR. In turn, aCVR was associated with a steeper reduction in aCBF in SA than in CA. IMT was strongly associated with greater PI and RI (r>0.81, P<0.001) in SA, whereas a weaker relationship for PI (r=0.46, P=0.03) and no significant relationship for RI were found in CA. The study found stronger associations between pulsatile cerebrovascular haemodynamics and structural and functional alterations in central arteries in SA that may underlie the elevated risk for cerebrovascular disease.Journal of Human Hypertension advance online publication, 16 July 2015; doi:10.1038/jhh.2015.76.
    Journal of human hypertension 07/2015; DOI:10.1038/jhh.2015.76 · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD200 is a transmembrane protein that belongs to the immunoglobulin family of proteins and is ubiquitously expressed on a variety of cell types. Upon interaction with its receptors (CD200Rs) expressed on myeloid-derived cells and T lymphocytes, an immunoregulatory signal is delivered to receptor-expressing cells. Previous studies have implicated a role for CD200:CD200R in the regulation of the expression of mRNA markers of osteoclastogenesis/osteoblastogenesis, following interaction of CD200 (on osteoblast precursors) with CD200R1 (on osteoclast precursors). Signaling of CD200R1 is hypothesized to attenuate osteoclastogenesis. We have investigated whether levels of soluble forms of CD200 and/or CD200R1 (sCD200, sCD200R1) are altered in volunteers undergoing 6° head down tilt bed rest to mimic conditions of microgravity known to be associated with preferential osteoclastogenesis and whether countermeasures, reported to be beneficial in attenuation of bone loss under microgravity conditions, would lead to altered sCD200 and sCD200R1 levels. Our data suggest that, as predicted, sCD200 levels fall under bed rest conditions while sCD200R1 levels rise. In subjects undergoing 30-minute per day continuous centrifugation protocols, as a countermeasure to attenuate changes which may lead to bone loss, these alterations in sCD200 and sCD200R1 levels seen under conditions of bed rest were abolished or attenuated. Our results suggest that measurement of sCD200 and/or sCD200R1 may prove a useful and rapid means of monitoring subjects at risk of bone loss and/or accessing the efficacy of treatment regimes designed to counter bone loss.
    Bone 12/2013; 60. DOI:10.1016/j.bone.2013.12.004 · 3.97 Impact Factor
  • R Villar · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the data repeatability for popliteal blood flow velocity (PBV), popliteal arterial diameter (AD(pop)), popliteal blood flow (PBF) and lower limb vascular conductance (VC) at rest and exercise in three body positions, two work rates and two inspired oxygen fractions. Fifteen, eleven and ten healthy volunteers participated in the three phases of the studies. Resting protocols were performed in horizontal (HOR), 35° head-down tilt (HDT) and 45° head-up tilt (HUT) for 5 min in each body position. Participants also exercised at lower and higher power outputs (repeated plantar flexion contractions at 20% and 30% maximal voluntary contraction, respectively) in HOR, HDT and HUT and in normoxia (21%O(2)) and hypoxia (14%O(2)) with the same work rates and body positions. PBV and AD(pop) were measured by ultrasound to determine PBF, and VC was estimated by dividing PBF by muscle perfusion pressure (MPP). PBV, AD(pop), PBF and VC were not different, demonstrated good agreement and consistency between the two days of testing during both rest and exercise conditions regardless of body position. Therefore, these data support the utilization of Doppler and echo Doppler ultrasound as a reproducible method to measure PBV and AD(pop) and consequently estimate PBF and VC responses in such conditions.
    Physiological Measurement 03/2013; 34(3):291-306. DOI:10.1088/0967-3334/34/3/291 · 1.81 Impact Factor
  • K A Zuj · H Edgell · J K Shoemaker · M A Custaud · P Arbeille · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: This study tested the hypothesis that cardiovascular effects of sublingual nitroglycerin (NG) would be exaggerated after 56 days of 6° head-down bed rest (HDBR) in women, and that an aerobic and resistive exercise countermeasure (EX, n = 8) would reduce the effect compared with HDBR without exercise (CON, n = 7). Middle cerebral artery maximal blood flow velocity (CBFV), cardiac stroke volume (SV), and superficial femoral artery blood flow (Doppler ultrasound) were recorded at baseline rest and for 5 min following 0.3 mg sublingual NG. Post-HDBR, NG caused greater increases in heart rate (HR) in CON compared with EX (+24.9 ± 7.7 and +18.8 ± 6.6 beats/min, respectively, P < 0.0001). The increase in HR combined with reductions in SV to maintain cardiac output. Systolic, mean, and pulse pressures were reduced 5-10 mmHg by NG, but total peripheral resistance was only slightly reduced at 3 min after NG. Reductions in CBFV of -12.5 ± 3.8 cm/s were seen after NG, but a reduction in the Doppler resistance index suggested dilation of the middle cerebral artery with no differences after HDBR. The femoral artery dilated with NG and blood flow was reduced ∼50% with the appearance of large negative waves suggesting a marked increase in downstream resistance, but there were no effects of HDBR. In general, responses of women to NG were not altered by HDBR; the greater increase in HR in CON but not EX was probably a consequence of cardiovascular deconditioning. These results contrast with the hypothesis and a previous investigation of men after HDBR by revealing no change in cardiovascular responses to exogenous nitric oxide.
    Journal of Applied Physiology 05/2012; 113(3):434-41. DOI:10.1152/japplphysiol.00445.2012 · 3.06 Impact Factor
  • K A Zuj · Ph Arbeille · J K Shoemaker · A P Blaber · D K Greaves · D Xu · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.
    AJP Heart and Circulatory Physiology 04/2012; 302(12):H2592-8. DOI:10.1152/ajpheart.00029.2012 · 3.84 Impact Factor
  • Philippe Arbeille · Kathryn Zuj · Kevin Shoemaker · Richard Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In a study to identify an early hemodynamic predictor of syncope, 12 men (25-40 yr) underwent 30 min of 80 degrees head-up tilt, followed by progressive lower body negative pressure (LBNP) until presyncope. Temporal (supplying extracranial tissues: TEMP), middle cerebral (MCA), and superficial femoral (FEM) arterial flow velocity (V) and vascular resistance indices (VR) were evaluated continuously using Doppler ultrasound. Ratios of the Doppler V(MEAN) (V(MCA)/V(FEM) or V(MCA)/ V(TEMP)) were used to assess flow redistribution between these areas. The progression of the testing protocol showed increases in vascular resistance in all territories. At presyncope, both MCA(VR) and FEM(VR) were reduced while there was a large increase in TEMP(VR). Vasoconstriction of the vascular bed supplied by the temporal artery occurred early during central hypovolemia resulting in the appearance of negative velocity deflections, which could be used for the early detection of impending syncope. Analysis of the velocity ratios showed little change until the onset of presyncope where there was an increase in V(MCA)/V(TEMP) which confirmed that vasoconstriction of the vascular bed supplied by the TEMP artery contributed to cardiac output redistribution in favor of the brain, and a reduction in V(MCA)/V(FEM) suggesting a redistribution of cardiac output toward the legs. In 67% of the tests, the appearance of the negative component of V(TEMP) was an early sign of increasing TEMP(VR) that occurred before visually detectable changes in VE(FEM) or V(MCA) and within 5 min before presyncope. Such easily identifiable in real time Doppler signs allowed experimenters to anticipate test termination.
    Aviation Space and Environmental Medicine 04/2012; 83(4):394-402. DOI:10.3357/ASEM.3193.2012 · 0.88 Impact Factor
  • H Edgell · A D Robertson · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased incidence of orthostatic hypotension and presyncopal symptoms in young women could be related to hormonal factors that might be isolated by comparing cardiovascular and cerebrovascular responses to postural change in young and older men and women. Seven young women, 11 young men, 10 older women (>1 yr postmenopausal, no hormone therapy), and 9 older men participated in a supine-to-sit-to-stand test while measuring systemic hemodynamics, end-tidal Pco(2), and blood flow velocity of the middle cerebral artery (MCA). Women had a greater reduction in stroke volume index compared with age-matched men (change from supine to standing: young women: -22.9 ± 1.6 ml/m(2); young men: -14.4 ± 2.4 ml/m(2); older women: -17.4 ± 3.3 ml/m(2); older men: -13.8 ± 2.2 ml/m(2)). This was accompanied by offsetting changes in heart rate, particularly in young women, resulting in no age or sex differences in cardiac output index. Mean arterial pressure (MAP) was higher in older subjects and increased with movement to upright postures. Younger men and women had higher forearm vascular resistance that increased progressively in the upright posture compared with older men and women. There was no difference between sexes or ages in total peripheral resistance index. Women had higher MCA velocity, but both sexes had reduced MCA velocity while upright, which was a function of reduced blood pressure at the MCA and a significant reduction in end-tidal Pco(2). The reductions in stroke volume index suggested impaired venous return in women, but augmented responses of heart rate and forearm vascular resistance protected MAP in younger women. Overall, these results showed significant sex and age-related differences, but compensatory mechanisms preserved MAP and MCA velocity in young women.
    Journal of Applied Physiology 02/2012; 112(9):1482-93. DOI:10.1152/japplphysiol.01204.2011 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early evidence from long-duration flights indicates general cardiovascular deconditioning, including reduced arterial baroreflex gain. The current study investigated the spontaneous baroreflex and markers of cardiovascular control in six male astronauts living for 2-6 mo on the International Space Station. Measurements were made from the finger arterial pressure waves during spontaneous breathing (SB) in the supine posture pre- and postflight and during SB and paced breathing (PB, 0.1 Hz) in a seated posture pre- and postflight, as well as early and late in the missions. There were no changes in preflight measurements of heart rate (HR), blood pressure (BP), or spontaneous baroreflex compared with in-flight measurements. There were, however, increases in the estimate of left ventricular ejection time index and a late in-flight increase in cardiac output (CO). The high-frequency component of RR interval spectral power, arterial pulse pressure, and stroke volume were reduced in-flight. Postflight there was a small increase compared with preflight in HR (60.0 ± 9.4 vs. 54.9 ± 9.6 beats/min in the seated posture, P < 0.05) and CO (5.6 ± 0.8 vs. 5.0 ± 1.0 l/min, P < 0.01). Arterial baroreflex response slope was not changed during spaceflight, while a 34% reduction from preflight in baroreflex slope during postflight PB was significant (7.1 ± 2.4 vs. 13.4 ± 6.8 ms/mmHg), but a smaller average reduction (25%) during SB (8.0 ± 2.1 vs. 13.6 ± 7.4 ms/mmHg) was not significant. Overall, these data show no change in markers of cardiovascular stability during long-duration spaceflight and only relatively small changes postflight at rest in the seated position. The current program routine of countermeasures on the International Space Station provided sufficient stimulus to maintain cardiovascular stability under resting conditions during long-duration spaceflight.
    Journal of Applied Physiology 12/2011; 112(5):719-27. DOI:10.1152/japplphysiol.01196.2011 · 3.06 Impact Factor
  • P Arbeille · K Shoemaker · P Kerbeci · S Schneider · A Hargens · R Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study is to assess by echography and Doppler the Cerebral (Vmca), Aortic (Vao) and Femoral (Vfem) arterial flow velocity and calf vein (Tibial, Gastrocnemius) section (Tib, Gast) during orthostatic intolerance (OI) test after a 60-day, head down tilt bed rest (HDBR). Twenty-four women (25-40 years) underwent a 60-day HDBR at -6°: eight as control (Con), eight with exercise against lower body negative pressure (Ex-Lb) and eight with nutrition supplement (Nut). Before and after (R0) HDBR, all subjects underwent a 10-min, 80° tilt followed by progressive LBNP until presyncope. After the post-HDBR Tilt + LBNP test, two groups were identified: finishers (F, n = 11) who completed the Tilt and non-finishers (NF, n = 13). A higher percentage decrease in Vao flow, higher percentage distension of Tib vein and a lack of increase in Vmca/Vfem ratio during the post-HDBR Tilt + LBNP compared to pre-HDBR were correlated to OI, but not all of these abnormal responses were present in each of the NF subjects. Abnormal responses were more frequent in Con and Nut than in Ex-Lb subjects. (1) HDBR did not affect the cardiac, arterial and venous responses to the orthostatic test to the same extent in each subject. (2) Exercise within LBNP partially preserved the cardiovascular response to Tilt, while Nutrition supplementation had no efficacy. (3) Cerebral/femoral flow ratio and aortic flow were the parameters most closely related to OI. (4) Reduction in aortic flow was not the major hemodynamic change preceding syncope.
    Arbeitsphysiologie 05/2011; 112(1):277-84. DOI:10.1007/s00421-011-1935-y · 2.19 Impact Factor
  • R L Hughson · A Faisal ·

    Arbeitsphysiologie 04/2011; 112(1). DOI:10.1007/s00421-011-1949-5 · 2.19 Impact Factor
  • AD Robertson · C F Tessmer · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Arterial stiffness is an established cardiovascular risk factor influencing haemodynamic properties in the microcirculation. We tested the hypothesis that increased arterial stiffness is associated with an increase in cerebrovascular resistance in the elderly. Brachial-ankle pulse wave velocity (baPWV), using arterial tonometry, and anterior cerebral blood flow (aCBF), using extracranial ultrasound, were measured in 26 participants (67-92 years). Non-parametric statistics examined relationships between age, blood pressure, baPWV, cerebrovascular resistance (CVRi) and aCBF. Bivariate analysis suggested that baPWV was the only vascular characteristic associated with CVRi (r(s)=0.59; P=0.002). CVRi was strongly correlated with aCBF (r(s)=-0.89; P<0.001). Furthermore, compared with participants in the lower three quartiles of baPWV (LO), those in the upper quartile (HI) had elevated CVRi (median (interquartile range); HI: 0.240 (0.143) mm Hg ml(-1) min(-1); LO: 0.197 (0.072) mm Hg ml(-1) min(-1); P=0.02), and tended to have lower aCBF (HI: 394 (155) ml min(-1); LO: 459 (154) ml min(-1); P=0.09). This study found a positive correlation between baPWV and CVRi in the elderly, suggesting that haemodynamic characteristics associated with arterial aging influence cerebral circulation.
    Journal of human hypertension 08/2009; 24(3):190-6. DOI:10.1038/jhh.2009.56 · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immobility in bed and decreased mobility cause adaptations to most human body systems. The effect of immobility on fat accumulation in hemopoietic bone marrow has never been measured prospectively. The reversibility of marrow fat accumulation and the effects on hemopoiesis are not known. In the present study, 24 healthy women (age: 25-40 yr) underwent -6 degrees head-down bed rest for 60 days. We used MRI to noninvasively measure the lumbar vertebral fat fraction at various time points. We also measured hemoglobin, erythropoietin, reticulocytes, leukocytes, platelet count, peripheral fat mass, leptin, cortisol, and C-reactive protein during bed rest and for 1 yr after bed rest ended. Compared with baseline, the mean (+/-SE) fat fraction was increased after 60 days of bed rest (+2.5+/-1.1%, P<0.05); the increase persisted 1 yr after the resumption of regular activities (+2.3+/-0.8%, P<0.05). Mean hemoglobin levels were significantly decreased 6 days after bed rest ended (-1.36+/-0.20 g/dl, P<0.05) but had recovered at 1 yr, with significantly lower mean circulating erythropoietin levels (-3.8+/-1.2 mU/ml, P<0.05). Mean numbers of neutrophils and lymphocytes remained significantly elevated at 1 yr (+617+/-218 neutrophils/microl and +498+/-112 lymphocytes/microl, both P<0.05). These results constitute direct evidence that bed rest irreversibly accelerated fat accumulation in hemopoietic bone marrow. The 2.5% increase in fat fraction after 60 days of bed rest was 25-fold larger than expected from historical ambulatory controls. Sixty days of bed rest accelerated by 4 yr the normal bone marrow involution. Bed rest and marrow adiposity were associated with hemopoietic stimulation. One year after subjects returned to normal activities, hemoglobin levels were maintained, with 43% lower circulating erythropoietin levels, and leukocytes remained significantly elevated across lineages. Lack of mobility alters hemopoiesis, possibly through marrow fat accumulation, with potentially wide-ranging clinical consequences.
    Journal of Applied Physiology 05/2009; 107(2):540-8. DOI:10.1152/japplphysiol.91530.2008 · 3.06 Impact Factor
  • P Arbeille · P Kerbeci · L Mattar · J K Shoemaker · R Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We quantified the impact of a 60-day head-down tilt bed rest (HDBR) with countermeasures on the arterial response to supine lower body negative pressure (LBNP). Twenty-four women [8 control (Con), 8 exercise + LBNP (Ex-LBNP), and 8 nutrition (Nut) subjects] were studied during LBNP (0 to -45 mmHg) before (pre) and on HDBR day 55 (HDBR-55). Left ventricle diastolic volume (LVDV) and mass, flow velocities in the middle cerebral artery (MCA flow) and femoral artery (femoral flow), portal vein cross-sectional area (portal flow), and lower limb resistance (femoral resistance index) were measured. Muscle sympathetic nerve activity (MSNA) was measured in the fibular nerve. Subjects were identified as finishers or nonfinishers of the 10-min post-HDBR tilt test. At HDBR-55, LVDV, mass, and portal flow were decreased from pre-HDBR (P < 0.05) in the Con and Nut groups only. During LBNP at HDBR-55, femoral and portal flow decreased less, whereas leg MSNA increased similarly, compared with pre-HDBR in the Con, Nut, and NF groups; 11 of 13 nonfinishers showed smaller LBNP-induced reductions in both femoral and portal flow (less vasoconstriction), whereas 10 of 11 finishers maintained vasoconstriction in either one or both regions. The relative distribution of blood flow in the cerebral versus portal and femoral beds during LBNP [MCA flow/(femoral + portal flow)] increased or reduced < 15% from pre-HDBR in 10 of 11 finishers but decreased > 15% from pre-HDBR in 11 of 13 nonfinishers. Abnormal vasoconstriction in both the portal and femoral vascular areas was associated with orthostatic intolerance. The vascular deconditioning was partially prevented by Ex-LBNP.
    AJP Heart and Circulatory Physiology 09/2008; 295(5):H1846-54. DOI:10.1152/ajpheart.509.2008 · 3.84 Impact Factor
  • D G Harvey · J L Kraemer · M T Sharratt · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the oxygen uptake (VO2) and carbon dioxide output (VCO2) during completion of a circuit developed for testing fire fighters and related performance time to laboratory measures of fitness. Twenty-two healthy university students (ten women) were trained in the tasks then performed the circuit as quickly as possible. Breath-by-breath gas exchange and heart rate were continuously measured with a portable system. Median circuit time was 6:13 (min:s, 25-75% = 5:46-6:42) for men and 7:25 (25-75% = 6:49-10:21) for 8 women finishers (P = 0.023), and VO2 averaged 68 and 64% VO2max for the men and women during the circuit. Both men and women had high respiratory exchange ratios (>1.0) suggesting marked anaerobic energy contribution. Physiological variables associated with circuit time were assessed by backward stepwise regression yielding a significant model that included only peak work rate during arm cranking exercise as a function of circuit completion time across men and women combined (P < 0.001). For men, but especially for women, the time required for the simulated victim drag (68.2 kg mannequin) was positively correlated with total time to complete the other circuit elements (r = 0.51, r = 0.96 respectively). The simple correlation between circuit time and VO2max (mL/kg/min) revealed poor relationships for men (r = -0.37, P > 0.05) and women (r = 0.20, P > 0.05). These data demonstrated that upper body fitness as reflected by peak work rate during arm cranking correlated with total circuit time for the men and women in our population sample.
    Arbeitsphysiologie 06/2008; 103(1):89-98. DOI:10.1007/s00421-008-0673-2 · 2.19 Impact Factor
  • Source
    P Arbeille · P Kerbeci · L Mattar · J K Shoemaker · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to quantify by echography the changes in the intramuscular [gastrocnemius (Gast)] and nonintramuscular [posterior tibial (Tib)] calf veins cross-sectional area (CSA) and the superficial tissue thickness (STth) in response to lower body negative pressure (LBNP) after 60-day head-down bed rest (HDBR). Twenty-four healthy women (25-40 yr) were divided into three groups: control (Con), treadmill-LBNP and flywheel (Ex-Lb), nutrition (Nut; protein supplement). All underwent a LBNP (0 and -45 mmHg) before and on day 55 of HDBR. Subjects were identified as finisher (F) or nonfinisher (NF) of a 10-min tilt test after 60 days of HDBR. There were no differences in resting CSA of the Tib and Gast veins on HDBR day 55 compared with pre-HDBR for the Ex-Lb, Con and Nut, or the F groups; however, for NF both the Tib and Gast vein CSA at rest were significantly smaller after HDBR. At -45 mmHg LBNP, Tib and Gast CSAs were not significantly different from before HDBR in all groups (Ex-Lb, Con, Nut, F, NF). However, percent change in CSA of both veins from rest to -45 mmHg LBNP was significantly greater in the Con and Nut groups compared with Ex-Lb, and also NF compared with F. Similarly, the percent increase in STth on going from rest to -45 mmHg was higher after HDBR in the Con and Nut groups compared with Ex-Lb, as well as NF compared with F. These results showed that the Ex-Lb countermeasure minimized the bed rest effect on leg vein capacitance (CSA percent change) and STth increase during LBNP, whereas Nut had no effect and that higher leg vein and superficial tissue capacitance were associated with reduced orthostatic tolerance.
    Journal of Applied Physiology 05/2008; 104(4):938-43. DOI:10.1152/japplphysiol.01021.2007 · 3.06 Impact Factor
  • D Fischer · P Arbeille · J K Shoemaker · D D O'Leary · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: This study tested the hypothesis that cardiovascular and hormonal responses to lower body negative pressure (LBNP) would be altered by 4-h head down bed rest (HDBR) in 11 healthy young men. In post-HDBR testing, three subjects failed to finish the protocol due to presyncopal symptoms, heart rate was increased during LBNP compared with pre-HDBR, mean arterial blood pressure was elevated at 0, -10, and -20 mmHg and reduced at -40 mmHg, central venous pressure (CVP) and cardiac stroke volume were reduced at all levels of LBNP. Plasma concentrations of renin, angiotensin II, and aldosterone were significantly lower after HDBR. Renin and angiotensin II increased in response to LBNP only post-HDBR. There was no effect of HDBR or LBNP on norepinephrine while epinephrine tended to increase at -40 mmHg post-HDBR (P = 0.07). Total blood volume was not significantly reduced. Splanchnic blood flow taken from ultrasound measurement of the portal vein was higher at each level of LBNP post-compared with pre-HDBR. The gain of the cardiopulmonary baroreflex relating changes in total peripheral resistance to CVP was increased after HDBR, but splanchnic vascular resistance was actually reduced. These results are consistent with our hypothesis and suggest that cardiovascular instability following only 4-h HDBR might be related to altered hormonal and/or neural control of regional vascular resistance. Impaired ability to distribute blood away from the splanchnic region was associated with reduced stroke volume, elevated heart rate, and the inability to protect mean arterial pressure.
    Journal of Applied Physiology 01/2008; 103(6):2018-25. DOI:10.1152/japplphysiol.00121.2007 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed at investigating the autonomic nervous system influences on the fractal organization of human heart rate during sympathovagal interactions, with special emphasize on the short-term fractal organization in heart rate variability (HRV), as assessed by the scaling exponent (alpha(1)) of the detrended fluctuation analysis. Linear and non-linear HRV analyses were used to study the sympathetic and vagal modulation of heart rate in ten healthy men (mean +/- SEM; age 26 +/- 1 years) during conditions of 1) increased sympathetic activity and vagal withdrawal (head-up tilt), 2) decreased sympathetic activity and increased vagal outflow (thermoneutral upright head-out water immersion, WIn), and 3) simultaneous activation of the two arms of the autonomic nervous activity (upright head-out immersion in cold water, WIc). Hemodynamic and linear HRV results were consistent with previous reports during similar physiological conditions. alpha(1) increased significantly during head-up tilt (from 0.71 +/- 0.13 supine to 0.90 +/- 0.15 upright) and WIn (0.86 +/- 0.10) and was significantly decreased during WIc (0.61 +/- 0.15). Thus, alpha(1) increased when the cardiac autonomic interplay was altered in a reciprocal fashion, whatever the direction of the balance change. Conversely, alpha(1) decreased during the concomitant activation of both vagal and sympathetic activities. The results of linear analysis were necessary to precisely define the direction of change in autonomic control revealed by an increase in alpha(1), while the direction of change in alpha(1) indicated whether an increased vagal activity is coupled with a decreased or increased sympathetic activation. Using both linear and non-linear analysis of HRV may increase the understanding of changes in cardiac autonomic status.
    Autonomic Neuroscience 01/2008; 137(1-2):27-36. DOI:10.1016/j.autneu.2007.06.284 · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sedentary behavior has deleterious effects on the cardiovascular system, including reduced endothelial functions. A 2-mo bed rest study in healthy women [women international space simulation for exploration (WISE) 2005 program] presented a unique opportunity to analyze the specific effects of prolonged inactivity without other vascular risk factors on the endothelium. We investigated endothelial properties before and after 56 days of bed rest in 8 subjects who performed no exercise (control group: No-EX) and in 8 subjects who regularly performed treadmill exercise in a lower body negative pressure chamber as well as resistance exercise (countermeasure group, EX). A functional evaluation of the microcirculation in the skin was assessed with laser Doppler. We studied endothelium-dependent and -independent vasodilation using iontophoresis of acetylcholine and sodium nitroprusside, respectively. We also measured circulating endothelial cells (CECs), an index of endothelial damage. In the No-EX group, endothelium-dependent vasodilation was significantly reduced (35.4 +/- 4.8% vs. 24.1 +/- 3.8%, P < 0.05) by bed rest with a significant increase in the number of CECs (3.6 +/- 1.4 vs. 10.6 +/- 2.7 ml(-1), P < 0.05). In the EX group, endothelium-dependent vasodilation and number of CECs were preserved. Our study shows that in humans prolonged bed rest causes impairment of endothelium-dependent function at the microcirculatory level, along with an increase in circulating endothelial cells. Microcirculatory endothelial dysfunction might participate in cardiovascular deconditioning, as well as in several bed rest-induced pathologies. We therefore conclude that the endothelium should be a target for countermeasures during periods of prolonged deconditioning.
    AJP Heart and Circulatory Physiology 12/2007; 293(5):H3159-64. DOI:10.1152/ajpheart.00591.2007 · 3.84 Impact Factor
  • K A Zuj · D K Greaves · R L Hughson ·
    [Show abstract] [Hide abstract]
    ABSTRACT: During the WISE-2005 study of 24 women, we observed a reduction (21.6 +/- 0.89%, mean +/- SEM) in cerebral blood flow velocity (CBV) measured by transcranial Doppler ultrasound, following 0.3 mg sublingual nitroglycerin (NG). In parallel, we observed quantitative reductions in leg blood flow (47.3 +/- 7.0%) and corresponding reductions in calculated conductance (Conductance = Femoral Flow / Mean Arterial Pressure; 45.7 +/- 7.2%). To determine if the reduction in CBV was the result of reduced cerebral blood flow or dilation of the middle cerebral artery (MCA), the change in CBV in the MCA was compared with changes in quantitative flow measured in the common carotid artery (CCA). The relationship between CBV and CCA blood flow was tested in five men and four women using hyper- and hypo-ventilation to manipulate arterial PCO2. Changes in CCA blood flow were positively correlated with changes in CBV (p<0.001). We then investigated the CBV and CCA flow responses to sublingual NG in an additional two men and six women. Concurrent with the reduction in CBV there was no change in blood flow through the CCA (p>0.05). These results indicate that the decrease in CBV observed in response to NG was probably the result of dilation of the MCA and that total cerebral blood flow was similar after administration of NG. These results suggest regional differences in the vascular responses to NG during the WISE bed rest. Conduit vessels of both the peripheral and cerebral vasculature dilated; however, the resistance vessels in skeletal muscle constricted causing a reduction in blood flow, while the resistance vessels of the brain appeared to be unaffected by NG so that cerebral blood flow remained constant. These results highlight the need to obtain quantitative measures of cerebral blood flow if there is reason to suspect that the diameter of the MCA might not remain constant.
    Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology 08/2007; 14(1):P65-6.

Publication Stats

6k Citations
648.62 Total Impact Points


  • 1982-2013
    • University of Waterloo
      • • Faculty of Applied Health Sciences
      • • Department of Kinesiology
      Ватерлоо, Ontario, Canada
  • 2001
    • University of Oulu
      Uleoborg, Oulu, Finland
    • Simon Fraser University
      Burnaby, British Columbia, Canada
  • 2000-2001
    • Ryerson University
      • Department of Mechanical Engineering
      Toronto, Ontario, Canada
  • 1994
    • The University of Tokyo
      • Faculty & Graduate School of Education
      白山, Tōkyō, Japan
  • 1977
    • McMaster University
      • Department of Medicine
      Hamilton, Ontario, Canada