Are you Mieko Yanagisawa?

Claim your profile

Publications (11)46.37 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL. This article is protected by copyright. All rights reserved.
    International Journal of Cancer 09/2015; DOI:10.1002/ijc.29848 · 5.09 Impact Factor

  • Cancer Research 08/2015; 75(15 Supplement):2691-2691. DOI:10.1158/1538-7445.AM2015-2691 · 9.33 Impact Factor

  • Molecular and Clinical Oncology 07/2015; DOI:10.3892/mco.2015.609
  • Mieko Yanagisawa · Keigo Yorozu · Mitsue Kurasawa · Yoichiro Moriya · Naoki Harada ·

    Journal of Cancer Therapy 01/2013; 04(07):1236-1241. DOI:10.4236/jct.2013.47144
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular markers predicting sensitivity to anticancer drugs are important and useful not only for selecting potential responders but also for developing new combinations. In the present study, we analyzed the difference in the sensitivity of xenograft models to capecitabine (Xeloda®), 5'-deoxy-5-fluorouridine (5'-DFUR, doxifluridine, Furtulon®) and 5-FU by comparing the mRNA levels of 12 pyrimidine nucleoside-metabolizing enzymes. Amounts of mRNA in the tumor tissues of 80 xenograft models were determined by real-time RT-PCR and mutual correlations were examined. A clustering analysis revealed that the 12 enzymes were divided into two groups; one group consisted of 8 enzymes, including orotate phosphoribosyl transferase (OPRT), TMP kinase (TMPK) and UMP kinase (UMPK), and was related to the de novo synthesis pathway for nucleotides, with mRNA expression levels showing significant mutual correlation. In the other group, 4 enzymes, including thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD), were involved in the salvage/degradation pathway of the nucleotides, and the mRNA levels of this group were dispersed more widely than that of the de novo group. Antitumor activity was assessed in 24 xenograft models for each drug. The antitumor activity of capecitabine and 5'-DFUR correlated significantly with the mRNA levels of TP and with the TP/DPD ratio, whereas the activity of 5-FU correlated significantly with OPRT, TMPK, UMPK and CD. In a stepwise regression analysis, TP and DPD were found to be independent predictive factors of sensitivity to capecitabine and 5'-DFUR, and UMPK was predictive of sensitivity to 5-FU. These results indicate that the predictive factors for sensitivity to capecitabine and 5'-DFUR in xenograft models may be different from those for 5-FU, suggesting that these drugs may have different responders in clinical usage.
    Oncology Reports 11/2012; 29(2). DOI:10.3892/or.2012.2149 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bevacizumab is a humanized monoclonal antibody to human vascular endothelial cell growth factor (VEGF) and has been used for many types of cancers such as colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. Bevacizumab might be effective against gastric cancer, because VEGF has been reported to be involved in the development of gastric cancer as well as other cancers. On the other hand, there are no established biomarkers to predict the bevacizumab efficacy in spite of clinical needs. Therefore, we tried to identify the predictive markers for efficacy of bevacizumab in gastric cancer patients by using bevacizumab-sensitive and insensitive tumor models. Nine human gastric and two colorectal cancer mouse xenografts were examined for their sensitivity to bevacizumab. We examined expression levels of angiogenic factors by ELISA, bioactivity of VEGF by phosphorylation of VEGFR2 in HUVEC after addition of tumor homogenate, tumor microvessel density by CD31-immunostaining, and polymorphisms of the VEGF gene by HybriProbe™ assay. Of the 9 human gastric cancer xenograft models used, GXF97, MKN-45, MKN-28, 4-1ST, SC-08-JCK, and SC-09-JCK were bevacizumab-sensitive, whereas SCH, SC-10-JCK, and NCI-N87 were insensitive. The sensitivity of the gastric cancer model to bevacizumab was not related to histological type or HER2 status. All tumors with high levels of VEGF were bevacizumab-sensitive except for one, SC-10-JCK, which had high levels of VEGF. The reason for the refractoriness was non-bioactivity on the phosphorylation of VEGFR2 and micro-vessel formation of VEGF, but was not explained by the VEGF allele or VEGF165b. We also examined the expression levels of other angiogenic factors in the 11 gastrointestinal tumor tissues. In the refractory models including SC-10-JCK, tumor levels of another angiogenic factor, bFGF, were relatively high. The VEGF/bFGF ratio correlated more closely with sensitivity to bevacizumab than with the VEGF level. VEGF levels and VEGF/bFGF ratios in tumors were related to bevacizumab sensitivity of the xenografts tested. Further clinical investigation into useful predictive markers for bevacizumab sensitivity is warranted.
    BMC Cancer 01/2012; 12(1):37. DOI:10.1186/1471-2407-12-37 · 3.36 Impact Factor

  • Cancer Research 07/2011; 71(8 Supplement):4256-4256. DOI:10.1158/1538-7445.AM2011-4256 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous preclinical and clinical findings have suggested a potential role of epidermal growth factor receptor (EGFR) in osteoclast differentiation and the pathogenesis of bone metastasis in cancer. In this study, we investigated the effect of erlotinib, an orally active EGFR tyrosine kinase inhibitor (TKI), on the bone invasion of human non-small-cell lung cancer (NSCLC) cell line NCI-H292. First, we established a novel osteolytic bone invasion model of NCI-H292 cells which was made by inoculating cancer cells into the tibia of scid mice. In this model, NCI-H292 cells markedly activated osteoclasts in tibia, which resulted in osteolytic bone destruction. Erlotinib treatment suppressed osteoclast activation to the basal level through suppressing receptor activator of NF-κB ligand (RANKL) expression in osteoblast/stromal cell at the bone metastatic sites, which leads to inhibition of osteolytic bone destruction caused by NCI-H292 cells. Erlotinib inhibited the proliferation of NCI-H292 cells in in vitro. Erlotinib suppressed the production of osteolytic factors, such as parathyroid hormone-related protein (PTHrP), IL-8, IL-11 and vascular endothelial growth factor (VEGF) in NCI-H292 cells. Furthermore, erlotinib also inhibited osteoblast/stromal cell proliferation in vitro and the development of osteoclasts induced by RANKL in vitro. In conclusion, erlotinib inhibits tumor-induced osteolytic invasion in bone metastasis by suppressing osteoclast activation through inhibiting tumor growth at the bone metastatic sites, osteolytic factor production in tumor cells, osteoblast/stromal cell proliferation and osteoclast differentiation from mouse bone marrow cells.
    Clinical and Experimental Metastasis 06/2011; 28(7):649-59. DOI:10.1007/s10585-011-9398-4 · 3.49 Impact Factor
  • K. Furugaki · Y. Moriya · T. Iwai · M. Yanagisawa · K. Yorozu · K. Fujimoto-Ouchi ·

    EJC Supplements 11/2010; 8(7):62-62. DOI:10.1016/S1359-6349(10)71886-3 · 9.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been reported that bevacizumab in combination with paclitaxel significantly prolongs progression-free survival compared with paclitaxel alone in the initial treatment for metastatic breast cancer. To understand how bevacizumab enhances the efficacy of paclitaxel, we investigated the mechanism in a MX-1 human breast cancer xenograft model. The antitumor activity of bevacizumab at 5 mg/kg in combination with paclitaxel at 20 or 30 mg/kg was significantly higher than that of either agent alone. First, we measured the paclitaxel concentration in tumor to see whether bevacizumab enhances the activity by increasing the tumor concentration of paclitaxel. When given in combination with bevacizumab, the levels of paclitaxel in the tumor increased. Paclitaxel at 30 mg/kg with bevacizumab showed a similar tumor concentration as paclitaxel alone at either 60 or 100 mg/kg, with a similar degree of tumor growth inhibition. In contrast, no remarkable differences in paclitaxel concentration in the plasma or liver were observed between the paclitaxel monotherapy group and the paclitaxel plus bevacizumab group. An increase in paclitaxel concentration by bevacizumab was also found in another model, A549. In the same MX-1 model, vascular permeability in the tumor was significantly decreased by treatment with bevacizumab. There was no difference in microvessel density between the bevacizumab alone group and the combination group. Results suggest that the synergistic antitumor activity of paclitaxel and bevacizumab in combination may be a result of the increase in paclitaxel concentration in tumor resulting from the downregulation of vascular permeability when co-administered with bevacizumab.
    Anti-cancer drugs 08/2010; 21(7):687-94. DOI:10.1097/CAD.0b013e32833b7598 · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the mechanisms of the effects of combination treatments, we established animal models showing antitumor activity of bevacizumab as a monotherapy and in combination with capecitabine or capecitabine and oxaliplatin and measured thymidine phosphorylase (TP) and vascular endothelial growth factor (VEGF) levels. Tumor-inoculated nude mice were treated with bevacizumab, capecitabine, and oxaliplatin, alone or in combination, after tumor growth was confirmed and volume and microvessel density (MVD) in tumors were evaluated. Levels of TP and VEGF in the tumor were examined by ELISA. Bevacizumab showed significant antitumor activity as a monotherapy in three xenograft models (COL-16-JCK, COLO 205 and CXF280). The MVD in tumor tissues treated with bevacizumab was lower than that of the control. Antitumor activity of bevacizumab in combination with capecitabine was significantly higher than that of each agent alone (COL-16-JCK, COLO 205). Furthermore, the antitumor activity of bevacizumab in combination with capecitabine + oxaliplatin was significantly superior to that of capecitabine + oxaliplatin (COL-16-JCK). TP and VEGF levels were not increased by bevacizumab or capecitabine, respectively, suggesting there are other potentially efficacious mechanisms involved. In the present study we established human colorectal cancer xenograft models which reflect the efficacy of clinical combination therapies, capecitabine + bevacizumab and capecitabine + oxaliplatin + bevacizumab. We will further investigate the mechanisms of the combination therapies using these models.
    Oncology Reports 09/2009; 22(2):241-7. DOI:10.3892/or_00000430 · 2.30 Impact Factor