M Zameel Cader

Oxford University Hospitals NHS Trust, Oxford, England, United Kingdom

Are you M Zameel Cader?

Claim your profile

Publications (30)236.51 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuromuscular junction (NMJ) is a specialised synapse formed between a lower motor neuron and a skeletal muscle fibre, and is an early pathological target in numerous nervous system disorders, including amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy (SMA). Being able to accurately visualize and quantitatively characterise the NMJ in rodent models of neurological conditions, particularly during the early stages of disease, is thus of clear importance. We present a method for dissection of rodent deep lumbrical muscles located in the hind-paw, and describe how to perform immunofluorescent morphological analysis of their NMJs. These techniques allow the temporal assessment of a number of developmental and pathological NMJ phenotypes in lumbrical muscles. Small muscles, such as the distal hind-limb lumbrical muscles, possess a major advantage over larger muscles, such as gastrocnemius, in that they can be whole-mounted and the entire innervation pattern visualised. This reduces preparation time and ambiguity when evaluating important neuromuscular phenotypes. Together, these methods will allow the reader to perform a detailed and accurate analysis of the neuromuscular system in rodent models of disease in order to identify pertinent features of neuropathology.
    Journal of neuroscience methods 02/2014; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterised by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA, and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function GARS mutations to lower motor neuron degeneration remain unidentified. The neuromuscular junction (NMJ) appears to be an early target for pathology in a number of peripheral nerve diseases, and becomes denervated at later stages in two mouse models of CMT2D. We therefore performed a detailed longitudinal examination of NMJs in the distal lumbrical muscles and the proximal transversus abdominis (TVA) muscles of wild-type and Gars mutant mice. We determined that mutant lumbrical NMJs display a persistent defect in maturation that precedes a progressive, age-dependent degeneration. Conversely, the TVA remains relatively unaffected, with only a subtle, short-lived impairment in pre- and post-synaptic development and no reduction in lower motor neuron connectivity to muscle. Together, these observations suggest that mutant Gars is associated with compromised development of the NMJ prior to synaptic degeneration, and highlight the neuromuscular synapse as an important site of early, selective pathology in CMT2D mice.
    Human Molecular Genetics 12/2013; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRESK is a two-pore domain potassium channel. Loss of function mutations have been linked to typical migraine with aura and due to TRESK’s expression pattern and role in neuronal excitability it represents a promising therapeutic target. We developed a cell based assay using baculovirus transduced U20S cells to screen for activators of TRESK. Using a thallium flux system to measure TRESK channel activity we identified Cloxyquin as a novel activator. Cloxyquin was shown to have an EC50 of 3.8 μM in the thallium assay and displayed good selectivity against other potassium channels tested. Activity was confirmed using whole cell patch electrophysiology, with Cloxyquin causing a near two fold increase in outward current. The strategy presented here will be used to screen larger compound libraries with the aim of identifying novel chemical series which may be developed into new migraine prophylactics.
    Biochemical and Biophysical Research Communications 11/2013; 441(2):463-8. · 2.28 Impact Factor
  • M Zameel Cader
    [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is prevalent, debilitating and costly disorder with an ongoing unmet medical need. Human genetic studies have provided considerable insights into the molecular underpinnings of this complex brain disorder. Classical linkage studies have revealed the causes of familial hemiplegic migraine whilst more recently genome wide association studies have identified several susceptibility loci for typical migraine. New ways of accessing neurons and other cells directly from patients with migraine through the use of induced pluripotent stem cells offer exciting opportunities to understand the molecular pathogenesis. In conjunction with next generation omics, there are unprecedented opportunities to reveal key molecular players in the disease process and discover new drug targets.
    Human Molecular Genetics 08/2013; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.
    Brain 01/2013; · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.
    PLoS Genetics 12/2012; 8(12):e1003074. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cellular uptake of narrowly dispersed LDH {[Mg3Al(OH)8](CO3)0.5} nanoparticles into the Mouse Motor Neuron (NSC 34) cell line has been studied. The effect of LDH concentration and incubation time on the cellular uptake was investigated using fluorescein isothiocyanate (FITC) labelled LDH nanoparticles. We observed that cellular uptake increases with the increased LDHs concentration and incubation time. Confocal laser microscopy and transmission electron microscopy reveal that 20 nm LDHs nanoparticles intrude into the cytoplasm and then enrich in the cellular nucleus, while nanoparticles greater than 20 nm only locate in the cytoplasm. The 20 nm sized LDHs nanoparticles display similar uptake to both the cytoplasm and nucleus, and show little cytotoxicity with no significant decrease in NSC 34 cell proliferation and viability below 200 μg ml−1. DNA modified 20 nm LDH nanoparticles are successful in transfection of the pEGFP-N1 DNA plasmid to NSC 34 cells.
    Journal of Materials Chemistry 11/2012; · 5.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-receptors add complexity to cell-cell signaling systems. The secreted semaphorin 3s (Sema3s) require a co-receptor, neuropilin (Nrp), to signal through plexin As (PlxnAs) in functions ranging from axon guidance to bone homeostasis, but the role of the co-receptor is obscure. Here we present the low-resolution crystal structure of a mouse semaphorin-plexin-Nrp complex alongside unliganded component structures. Dimeric semaphorin, two copies of plexin and two copies of Nrp are arranged as a dimer of heterotrimers. In each heterotrimer subcomplex, semaphorin contacts plexin, similar to in co-receptor-independent signaling complexes. The Nrp1s cross brace the assembly, bridging between sema domains of the Sema3A and PlxnA2 subunits from the two heterotrimers. Biophysical and cellular analyses confirm that this Nrp binding mode stabilizes a canonical, but weakened, Sema3-PlxnA interaction, adding co-receptor control over the mechanism by which receptor dimerization and/or oligomerization triggers signaling.
    Nature Structural & Molecular Biology 10/2012; · 11.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify rare variants contributing to multiple sclerosis (MS) susceptibility in a family we have previously reported with up to 15 individuals affected across 4 generations. We performed exome sequencing in a subset of affected individuals to identify novel variants contributing to MS risk within this unique family. The candidate variant was genotyped in a validation cohort of 2,104 MS trio families. Four family members with MS were sequenced and 21,583 variants were found to be shared among these individuals. Refining the variants to those with 1) a predicted loss of function and 2) present within regions of modest haplotype sharing identified 1 novel mutation (rs55762744) in the tyrosine kinase 2 (TYK2) gene. A different polymorphism within this gene has been shown to be protective in genome-wide association studies. In contrast, the TYK2 variant identified here is a novel, missense mutation and was found to be present in 10/14 (72%) cases and 28/60 (47%) of the unaffected family members. Genotyping additional 2,104 trio families showed the variant to be transmitted preferentially from heterozygous parents (transmitted 16: not transmitted 5; χ(2) = 5.76, p = 0.016). Rs55762744 is a rare variant of modest effect on MS risk affecting a subset of patients (0.8%). Within this pedigree, rs55762744 is common and appears to be a modifier of modest risk effect. Exome sequencing is a quick and cost-effective method and we show here the utility of sequencing a few cases from a single, unique family to identify a novel variant. The sequencing of additional family members or other families may help identify other variants important in MS.
    Neurology 06/2012; 79(5):406-11. · 8.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a complex neurological disease. Genetic linkage analysis and genotyping of candidate genes in families with 4 or more affected individuals more heavily loaded for susceptibility genes has not fully explained familial disease clustering. We performed whole exome sequencing to further understand the heightened prevalence of MS in these families. Forty-three individuals with MS (1 from each family) were sequenced to find rare variants in candidate MS susceptibility genes. On average, >58,000 variants were identified in each individual. A rare variant in the CYP27B1 gene causing complete loss of gene function was identified in 1 individual. Homozygosity for this mutation results in vitamin D-dependent rickets I (VDDR1), whereas heterozygosity results in lower calcitriol levels. This variant showed significant heterozygous association in 3,046 parent-affected child trios (p = 1 × 10(-5)). Further genotyping in >12,500 individuals showed that other rare loss of function CYP27B1 variants also conferred significant risk of MS, Peto odds ratio = 4.7 (95% confidence interval, 2.3-9.4; p = 5 × 10(-7)). Four known VDDR1 mutations were identified, all overtransmitted. Heterozygous parents transmitted these alleles to MS offspring 35 of 35× (p = 3 × 10(-9)). A causative role for CYP27B1 in MS is supported; the mutations identified are known to alter function having been shown in vivo to result in rickets when 2 copies are present. CYP27B1 encodes the vitamin D-activating 1-alpha hydroxylase enzyme, and thus a role for vitamin D in MS pathogenesis is strongly implicated.
    Annals of Neurology 12/2011; 70(6):881-6. · 11.19 Impact Factor
  • Source
    Greg A Weir, M Zameel Cader
    [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is a highly prevalent neurological disorder imparting a major burden on health care around the world. The primary pathology may be a state of hyperresponsiveness of the nervous system, but the molecular mechanisms are yet to be fully elucidated. We could now be at a watershed moment in this respect, as the genetic loci associated with typical forms of migraine are being revealed. The genetic discoveries are the latest step in the evolution of our understanding of migraine, which was initially considered a cerebrovascular condition, then a neuroinflammatory process and now primarily a neurogenic disorder. Indeed, the genetic findings, which have revealed ion channels and transporter mutations as causative of migraine, are a powerful argument for the neurogenic basis of migraine. Modulations of ion channels leading to amelioration of the migraine 'hyperresponsive' brain represent attractive targets for drug discovery. There lies ahead an exciting and rapidly progressing phase of migraine translational research, and in this review we highlight recent genetic findings and consider how these may affect the future of migraine neurobiology and therapy.
    BMC Medicine 01/2011; 9:116. · 7.28 Impact Factor
  • Biophysical Journal 01/2011; 100(3). · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Migraine with aura is a common, debilitating, recurrent headache disorder associated with transient and reversible focal neurological symptoms. A role has been suggested for the two-pore domain (K2P) potassium channel, TWIK-related spinal cord potassium channel (TRESK, encoded by KCNK18), in pain pathways and general anaesthesia. We therefore examined whether TRESK is involved in migraine by screening the KCNK18 gene in subjects diagnosed with migraine. Here we report a frameshift mutation, F139WfsX24, which segregates perfectly with typical migraine with aura in a large pedigree. We also identified prominent TRESK expression in migraine-salient areas such as the trigeminal ganglion. Functional characterization of this mutation demonstrates that it causes a complete loss of TRESK function and that the mutant subunit suppresses wild-type channel function through a dominant-negative effect, thus explaining the dominant penetrance of this allele. These results therefore support a role for TRESK in the pathogenesis of typical migraine with aura and further support the role of this channel as a potential therapeutic target.
    Nature medicine 10/2010; 16(10):1157-60. · 27.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The age of onset of Huntington's disease (HD) is inversely correlated with the CAG length in the HD gene. The CAG repeat length accounts for 70% of the variability in HD age of onset. However, 90% of individuals worldwide with expanded alleles possess between 40 and 50 CAG repeat lengths in their HD gene. For these people, the size of their repeat only determines 44% of the variability in their age of onset. Once the effect of the CAG repeat has been accounted for, the residual variance in age of onset is a heritable trait. Targeted candidate gene studies and a genome scan have suggested some loci as potential modifiers of the age of onset of HD. We analyzed the large Venezuelan kindreds in which the HD gene was originally identified. These kindreds offer greater analytic power than standard sib-pair designs. We developed novel pedigree-member selection procedures to maximize power. Using a 5,858-single-nucleotide-polymorphism marker panel, we performed a genomewide linkage analysis. We discovered two novel loci on chromosome 2. Chromosome 2p25 (logarithm of the odds ratio (LOD)=4.29) and 2q35 (LOD=3.39) may contain genes that modify age of onset. A third linkage peak on chromosome 6q22 (LOD=2.48) may confirm the most promising locus from a previous genome scan. Two other candidate loci are suggestive on chromosome 5 (LOD=3.31 at 5p14 and LOD=3.14 at 5q32). All these regions harbor candidate genes that are potential HD modifier genes. Finding these modifier genes can reveal accessible and promising new therapeutic pathways and targets to ameliorate and cure HD.
    Genetic Epidemiology 08/2008; 32(5):445-53. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complexity of multiple sclerosis (MS) genetics has made the search for novel genes using traditional sharing methods problematic. In order to minimize the genetic heterogeneity present in the MS population we have screened the Canadian MS population for individuals belonging to the Hutterite Brethren. Seven Hutterites with clinically definite MS were ascertained and are related to a common founder by eight generations. Six of the 7 affected individuals and 21 of their unaffected family members (total = 27) were genotyped for 807 markers. Haplotypes were then inspected for sharing among the six MS patients. There were three haplotypes shared among all six MS patients. The haplotypes were located at 2q34-35, 4q31-32, and 17p13. An additional 15 haplotypes were shared among five of the six Hutterites MS patients. The HLA Class II region was one of the highlighted regions; however, the shared MHC haplotype bore the DRB1*04 allele and not the MS-associated DRB1*15 allele providing further evidence of the complexity of the MHC. Additional genotyping to refine the haplotypes followed by screening for potential variants may lead to the identification of a novel MS susceptibility gene(s) in this unique population.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 07/2008; 147B(4):467-72. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a disease that is widely believed to be autoimmune in nature. Genetic-epidemiological studies implicate susceptibility genes in the pathogenesis of MS, although non-MHC susceptibility linkages have been difficult to confirm. Insight into pathways that are intrinsic to other complex diseases has come from the genetic analysis of large, autosomal-dominant kindreds. Here, we present a genetic study of a large and unique kindred in which MS appears to follow an autosomal-dominant pattern of inheritance, with consistent penetrance in four generations. Eighty-two individuals of this 370-member family were genotyped with 681 microsatellite markers spanning the genome, with an average spacing of 5.3 cM. Parametric linkage analysis was performed and no significant LOD score (LOD >3.3) was observed. For a rare dominant disease model with reduced penetrance, 99.6% of the genome was excluded at a LOD score <-1 and 96% at a LOD score <-2. The HLA-DRB1 candidate gene was also genotyped by allele-specific methods. In each instance where at least one parent was positive for HLA-DRB1*15, one or more HLA-DRB1*15 alleles were transmitted to the affected offspring (11/11). HLA-DRB1*15 was transmitted equally from both the familial and the married-in parents and therefore this locus does not appear to be an autosomal-dominant acting gene in this family but an important modifier of risk. These results further stress the importance of the HLA-DRB1*15-bearing haplotype in determining MS susceptibility. Furthermore, this study highlights the complexity of MS genetics, even in the presence of a single family, seemingly segregating MS as an autosomal-dominant trait.
    Journal of neurology, neurosurgery, and psychiatry 02/2008; 79(2):158-62. · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is a common debilitating neurological disease characterised by attacks of severe headache with or without preceding aura. Its aetiology remains elusive; however it is clear that an interplay of genetic and environmental components play an important role. Familial hemiplegic migraine (FHM) is a rare and severe variant of migraine with aura and follows an autosomal dominant pattern of inheritance. This disease is genetically heterogeneous,with three causative genes having been identified. This review uses insights garnered from FHM to try and shed light on possible migraine disease pathogenesis.
    Journal of Neurology 01/2008; 254(12):1629-35. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system unsurpassed for its variability in disease outcome. It has been observed that axonal loss in MS is significant and that irreversible clinical disability relates to such axonal loss. The clinical similarities between Hereditary Spastic Paraplegia (HSP) and progressive MS, along with their analogous profiles of axonal loss in the long tracts, make the genes known to cause HSP biologically relevant candidates for the study of clinical outcome in MS. A cohort of sporadic MS cases and a set of unaffected controls were used to determine the role of HSP genes on MS susceptibility and disease severity. The MS cases were taken from opposite extremes of the putative distribution of long-term outcome using the most stringent clinical criteria to date. Genotyping the two sets of MS patients and controls could not provide any evidence to suggest that genes involved in the pathogenesis of HSP (Paraplegin, NIPA1, KIF5A, HSPD1, Atlastin, Spartin, Spastin, PLP1, L1CAM, Maspardin and BSCL2) play a role in susceptibility to, or modifying the course of, MS, although small effects of these genes cannot be ruled out.
    Journal of Neurology 10/2007; 254(9):1221-6. · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a chronic autoimmune complex trait with strong evidence for a genetic component. A female gender bias is clear but unexplained and a maternal parent-of-origin effect has been described. X-linked transmission of susceptibility has been previously proposed, based on pedigree, association and linkage studies. We genotyped 726 relative pairs including 552 affected sib-pairs for 22 X-chromosome microsatellite markers and a novel dataset of 195 aunt-uncle/niece-nephew (AUNN) affected pairs for 18 markers. Parent-of-origin effects were explored by dividing AUNN families into likely maternal and paternal trait transmission. For the sib-pair dataset we were able to establish exclusion at a lambda s = 1.9 for all markers using an exclusion threshold of LOD < or = -2. Similarly for the AUNN dataset, we established exclusion at lambdaAV = 1.9. For the combined dataset we estimate exclusion of lambda = 1.6. We did not identify significant linkage in either the sib-pairs or the AUNN dataset nor when datasets were stratified for the presence/absence of the HLA-DRB1*15 allele or for paternal or maternal transmission. This comprehensive scrutiny of the X-chromosome suggests that it is unlikely to harbour an independent susceptibility locus or one which interacts with the HLA. Complex interactions including epigenetic ones, and masking by balanced polymorphisms are mechanisms not excluded by the approach taken.
    Multiple Sclerosis 08/2007; 13(7):856-64. · 4.47 Impact Factor
  • Source

Publication Stats

665 Citations
236.51 Total Impact Points


  • 2013–2014
    • Oxford University Hospitals NHS Trust
      • Department of Paediatrics
      Oxford, England, United Kingdom
  • 2007–2011
    • University of Oxford
      • • Department of Physiology, Anatomy and Genetics
      • • Nuffield Department of Clinical Neurosciences
      Oxford, ENG, United Kingdom
  • 2002–2004
    • Wellcome Trust
      Londinium, England, United Kingdom
  • 2002–2003
    • Lawson Health Research Institute
      London, Ontario, Canada