Ronghua Li

Wenzhou Medical College, Yung-chia, Zhejiang Sheng, China

Are you Ronghua Li?

Claim your profile

Publications (38)164.82 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Inter-species and intraspecific variations in mitochondrial DNA (mtDNA) were observed in a bioinformatics analysis of the mitochondrial genomic sequences of 11 animal species. Some highly conserved regions were identified in the mitochondrial 12S and 16S ribosomal RNA (rRNA) genes of these species. To test whether these sequences are universally conserved, primers were designed to target the conserved regions of these two genes and were used to amplify DNA from 21 animal tissues, including two of unknown origin. By sequencing these PCR amplicons and aligning the sequences to a database of non-redundant nucleotide sequences, it was confirmed that these amplicons aligned specifically to mtDNA sequences from the expected species of origin. This molecular technique, when combined with bioinformatics, provides a reliable method for the taxonomic classification of animal tissues.
    Scientific Reports 01/2014; 4:4089. · 2.93 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report here the clinical, genetic, molecular, and biochemical evaluations in two Han Chinese families with maternally inherited hypertension. Fourteen of 20 adult matrilineal relatives of these families exhibited a wide range of severity in hypertension, while none of offspring of affected fathers had hypertension. The age-at-onset of hypertension in matrilineal relatives varied from 37 years to 83 years, with an average of 55 and 66 years, respectively. Mutational analysis of their mitochondrial genomes identified the m.4353T>C mutation in the tRNA, in conjunction with the known m.593C>T mutation in the tRNA(Phe) and m.5553C>T mutation in the tRNA(Trp). Northern analysis revealed that m.4353T>C, m.593C>T and m.5553C>T mutations caused ∼66%, 65%, and 12% reductions in the steady-state level of tRNA(Gln), tRNA(Phe) and tRNA(Trp), respectively. An in vivo protein labeling analysis showed ∼35% reduction in the rate of mitochondrial translation in cells carrying these tRNA mutations. Impaired mitochondrial translation is apparently a primary contributor to the reduced rates of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration and the increasing level of reactive oxygen species in the cells carrying these mtDNA mutations. These data demonstrate that mitochondrial dysfunction caused by mitochondrial tRNA mutations is associated with essential hypertension in these families.
    Human Mutation 05/2012; 33(8):1285-93. · 5.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The authors report here the clinical, genetic, molecular and biochemical characterisation of a large five-generation Han Chinese pedigree with maternally transmitted non-syndromic hearing loss. 17 of 35 matrilineal relatives exhibited variable severity and age at onset of sensorineural hearing loss. The average age at onset of hearing loss in matrilineal relatives of this family is 29 years, while matrilineal relatives among families carrying other mitochondrial DNA mutations developed hearing loss with congenital conditions or early age at onset. Molecular analysis of their mitochondrial genome identified the novel heteroplasmic T12201C mutation in the transfer RNA (tRNA)(His) gene. The levels of T12201C mutation in matrilineal relatives of this family correlated with the severity and age at onset of non-syndromic hearing loss. By contrast, other heteroplasmic mitochondrial DNA mutations often cause syndromic hearing loss. The T12201C mutation destabilises a highly conservative base-pairing (5A-68U) on the acceptor stem of tRNA(His). tRNA northern analysis revealed that the T12201C mutation caused an ∼75% reduction in the steady-state level of tRNA(His). An in vivo protein labeling analysis showed an ∼47% reduction in the rate of mitochondrial translation in cells carrying the T12201C mutation. Impaired mitochondrial translation is apparently a primary contributor to the marked reduction in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration or N,N,Ń,Ń-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration. These data provide the first direct evidence that mitochondrial dysfunctions caused by the heteroplasmic tRNA(His) mutation lead to late-onset non-syndromic deafness. Thus, the authors' findings provide new insights into the understanding of pathophysiology and valuable information on the management and treatment of maternally inherited hearing loss.
    Journal of Medical Genetics 10/2011; 48(10):682-90. · 5.70 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Despite maternal transmission of hypertension in some pedigrees, pathophysiology of maternally inherited hypertension remains poorly understood. To establish a causative link between mitochondrial dysfunction and essential hypertension. A total of 106 subjects from a large Chinese family underwent clinical, genetic, molecular, and biochemical evaluations. Fifteen of 24 adult matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offspring of affected fathers had hypertension. The age at onset of hypertension in the maternal kindred varied from 20 years to 69 years, with an average of 44 years. Mutational analysis of their mitochondrial genomes identified a novel homoplasmic 4263A>G mutation located at the processing site for the tRNA(Ile) 5'-end precursor. An in vitro processing analysis showed that the 4263A>G mutation reduced the efficiency of the tRNA(Ile) precursor 5'-end cleavage catalyzed by RNase P. tRNA Northern analysis revealed that the 4263A>G mutation caused ≈46% reduction in the steady-state level of tRNA(Ile). An in vivo protein-labeling analysis showed ≈32% reduction in the rate of mitochondrial translation in cells carrying the 4263A>G mutation. Impaired mitochondrial translation is apparently a primary contributor to the reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration and the increasing level of reactive oxygen species in cells carrying the 4263A>G mutation. These data provide direct evidence that mitochondrial dysfunction caused by mitochondrial tRNA(Ile) 4263A>G mutation is involved in essential hypertension. Our findings may provide new insights into pathophysiology of maternally transmitted hypertension.
    Circulation Research 04/2011; 108(7):862-70. · 11.86 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females) had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel) variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Mutations in mitochondrial 12S rRNA accounted for ~30% cases of aminoglycoside-induced deafness in this cohort. Our data strongly support the idea that the mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity. These data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside antibiotic therapy, and eventually to decrease the incidence of deafness.
    Journal of Translational Medicine 01/2011; 9:4. · 3.46 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat-shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity.
    Mitochondrion 06/2010; 10(4):380-90. · 4.03 Impact Factor
  • Source
    Ronghua Li, Min-Xin Guan
    [show abstract] [hide abstract]
    ABSTRACT: Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
    Molecular and cellular biology 03/2010; 30(9):2147-54. · 6.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mutations in mitochondrial DNA (mtDNA) have been found to be one of the most important causes of sensorineural hearing loss. We report here a clinical, genetic, molecular and biochemical characterization of a Han Chinese pedigree with maternally transmitted nonsyndromic hearing impairment. Seven of nine matrilineal relatives exhibited a variable severity and age-at-onset (8 years old) of hearing loss. Mutational analysis of mtDNA identified the novel homoplasmic tRNA(Ser(UCN)) 7505T>C mutation and other 37 variants belonging to haplogroup F1. The 7505T>C mutation, which is absent in 449 Chinese controls, is located at a highly conserved base-pairing (10A-20U) of tRNA(Ser(UCN)). The abolishment of 10A-20U base-pairing likely alters the tRNA(Ser(UCN)) metabolism. Functional significant of this mutation was supported by approximately 65% reductions in the level of tRNA(Ser(UCN)) observed in the lymphoblastoid cell lines carrying the 7505T>C mutation, compared with the wild-type cell lines. This reduced tRNA level is below the proposed threshold to support a normal respiration in lymphoblastoid cells. Furthermore, the highly conserved tRNA(Ala) 5587T>C and Cytb C93Y variants may have a modifying role of deafness expression associated with the 7505T>C mutation. However, genotyping analysis of nuclear modifier gene TRMU and the prominent deafness-cause gene GJB2 failed to detect any mutations in the member of this family. These data strongly indicate that the novel tRNA(Ser(UCN)) 7505T>C mutation is involved in maternally transmitted hearing loss. However, other genetic, epigenetic or environmental factors may contribute to the phenotypic variability of this family. Our findings will be helpful for counseling families of maternally inherited hearing loss.
    Molecular Genetics and Metabolism 01/2010; 100(1):57-64. · 2.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of approximately 3.96% for the 1555A>G mutation in this hearing-impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30years old, with the average of 14.5years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient's mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.
    Mitochondrion 10/2009; 10(1):69-81. · 4.03 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report here on the clinical, genetic, and molecular characterization of 1 Han Chinese family with maternally transmitted hypertension. Three of 7 matrilineal relatives in this 4-generation family exhibited the variable degree of essential hypertension at the age at onset, ranging from 35 to 60 years old. Sequence analysis of the complete mitochondrial DNA in this pedigree identified the novel homoplasmic 4401A>G mutation localizing at the spacer immediately to the 5' end of tRNA(Met) and tRNA(Gln) genes and 39 other variants belonging to the Asian haplogroup C. The 4401A>G mutation was absent in 242 Han Chinese controls. Approximately 30% reductions in the steady-state levels of tRNA(Met) and tRNA(Gln) were observed in 2 lymphoblastoid cell lines carrying the 4401A>G mutation compared with 2 control cell lines lacking this mutation. Failures in mitochondrial metabolism are apparently a primary contributor to the reduced rate of mitochondrial translation and reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration in lymphoblastoid cell lines carrying the 4401A>G mutation. The homoplasmic form, mild biochemical defect, late onset, and incomplete penetrance of hypertension in this family suggest that the 4401A>G mutation itself is insufficient to produce a clinical phenotype. Thus, the other modifier factors, eg, nuclear modifier genes and environmental and personal factors, may also contribute to the development of hypertension in these subjects carrying this mutation. These data suggest that mitochondrial dysfunctions, caused by the 4401A>G mutation, are involved in the development of hypertension in this Chinese pedigree.
    Hypertension 06/2009; 54(2):329-37. · 6.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mitochondrial DNA mutations have been associated with cardiovascular disease. We report here the clinical, genetic, and molecular characterization of 1 Han Chinese family with suggestively maternally transmitted hypertension. Matrilineal relatives in this family exhibited the variable degree of hypertension at the age at onset of 44 to 55 years old. Sequence analysis of entire mitochondrial DNA in this pedigree identified the known homoplasmic 4435A>G mutation, which is located immediately at the 3 prime end to the anticodon, corresponding with the conventional position 37 of tRNA(Met), and 35 other variants belonging to the Asian haplogroup B5a. The adenine (A37) at this position of tRNA(Met) is extraordinarily conserved from bacteria to human mitochondria. This modified A37 was shown to contribute to the high fidelity of codon recognition, the structural formation, and stabilization of functional tRNAs. In fact, a 40% reduction in the levels of tRNA(Met) was observed in cells carrying the 4435A>G mutation. As a result, a failure in mitochondrial tRNA metabolism, caused by the 4435A>G mutation, led to approximately 30% reduction in the rate of mitochondrial translation. However, the homoplasmic form, mild biochemical defect, and late onset of hypertension in subjects carrying the 4435A>G mutation suggest that the 4435A>G mutation itself is insufficient to produce a clinical phenotype. The other modifier factors, such as nuclear modifier genes, environmental, and personal factors may also contribute to the development of hypertension in the subjects carrying this mutation. Our findings imply that the 4435A>G mutation may act as an inherited risk factor for the development of hypertension in this Chinese pedigree.
    Hypertension 04/2009; 53(6):1083-90. · 6.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To investigate the role of mitochondrial modifiers in the development of deafness associated with 12S rRNA A1555G mutation. Four Chinese families with nonsyndromic and aminoglycoside-induced deafness were studied by clinical and genetic evaluation, molecular and biochemical analyses of mitochondrial DNA (mtDNA). These families exhibited high penetrance and expressivity of hearing impairment. Penetrances of hearing loss in WZD31, WZD32, WZD33, and WZD34 pedigrees ranged from 50 to 67% and from 39 to 50%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Matrilineal relatives in these families developed hearing loss at the average of 14, 13, 16, and 15 years of age, respectively, when aminoglycoside-induced deafness was excluded. Mutational analysis of entire mtDNA in these families showed the homoplasmic A1555G mutation and distinct sets of variants belonging to haplogroup B5b1. Of these, the tRNA G15927A mutation locates at the fourth base in the anticodon stem (conventional position 42) of tRNA. A guanine (G42) at this position of tRNA is highly conserved from bacteria to human mitochondria. The lower levels and altered electrophoretic mobility of tRNA were observed in cells carrying A1555G and G15927A mutations or only G15927A mutation but not cells carrying only A1555G mutation. The abolished base pairing (28C-42G) of this tRNA by the G15927A mutation caused a failure in tRNA metabolism, worsening the mitochondrial dysfunctions altered by the A1555G mutation. The G15927A mutation has a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.
    Pharmacogenetics and Genomics 10/2008; 18(12):1059-70. · 3.61 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset, audiometric configuration in these subjects. The penetrance of hearing loss in WZD8, WZD9, and WZD10 pedigrees were 46%, 46%, and 50%, respectively, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in these pedigrees were 23%, 31%, and 37.5%, respectively. Mutational analysis of the complete mitochondrial genomes showed the homoplasmic A1555G mutation and distinct sets of mitochondrial DNA variants belonging to haplogroups D4b2b, B5b1, and F2, respectively. Of these, the tRNA(Cys) T5802C, tRNA(Thr) A15924C, and ND5 T12338C variants are of special interest as these variants occur at positions which are highly evolutionarily conserved nucleotides of tRNAs or amino acid of polypeptide. These homoplasmic mtDNA variants were absent among 156 unrelated Chinese controls. The T5802C and G15927A variants disrupted a highly conserved A-U or C-G base-pairing at the anticodon-stem of tRNA(Cys) or tRNA(Thr), while the ND5 T12338C mutation resulted in the replacement of the translation-initiating methionine with a threonine, and also located in two nucleotides adjacent to the 3' end of the tRNA(Leu(CUN)). Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA variants. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.
    American Journal of Medical Genetics Part A 06/2008; 146A(10):1248-58. · 2.30 Impact Factor
  • Mitochondrion 01/2007; 7(6):429-429. · 4.03 Impact Factor
  • Mitochondrion 01/2007; 7(6):430-430. · 4.03 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report here the characterization of a four-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). This Chinese family exhibited a variable severity and age-at-onset of visual loss. Notably, the average age-at-onset of vision impairment changed from 26 years (generation III) to 14 years (generation IV), with the average of 18 years in this family. In addition, 30% and 50% of matrilineal relatives in generation III and IV of this family developed visual loss with a variability of severity, ranging from blindness to normal vision. Sequence analysis of the complete mitochondrial DNA in this pedigree revealed the presence of the homoplasmic ND4 G11778A mutation and 33 other variants, belonging to the Asian haplogroup D4. Of other variants, the homoplasmic G11696A mutation in the ND4 gene is of special interest as it was implicated to be associated with LHON in a large Dutch family and five Chinese pedigrees with extremely penetrance of visual loss. In fact, the G11696A mutation caused the substitution of an isoleucine for valine at amino acid position 313, located in a predicted transmembrane region of ND4. These imply that the G11696A mutation may act in synergy with the primary LHON-associated G11778A mutation in this Chinese pedigree.
    Mitochondrion 01/2007; 7(1-2):140-6. · 4.03 Impact Factor
  • Mitochondrion 01/2007; 7(6):429-429. · 4.03 Impact Factor
  • Ronghua Li, Min-Xin Guan
    Mitochondrion 01/2007; 7(6):429-429. · 4.03 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing loss including severity, age-at-onset, audiometric configuration in these subjects. Penetrances of hearing loss in BJ107, BJ108, and BJ109 pedigrees are 35%, 63%, and 67%, respectively. Mutational analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mitochondrial DNA (mtDNA) variants belonging to haplogroups N, F, and M, respectively. Of these variants, the A14693G mutation in the tRNA(Glu), the T15908C mutation in the tRNA(Thr), and the T10454C mutation in the tRNA(Arg) are of special interest as these mutations occur at positions which are highly evolutionarily conserved nucleotides of corresponding tRNAs. These homoplasmic mtDNA mutations were absent among 156 unrelated Chinese controls. The A14693G and T10454C mutations occur at the highly conserved bases of the TpsiC-loop of tRNA(Glu) and tRNA(Arg), respectively. Furthermore, the T15908C mutation in the tRNA(Thr) disrupts a highly conserved A-U base-pairing at the D-stem of this tRNA. The alteration of structure of these tRNAs by these mtDNA mutations may lead to a failure in tRNA metabolism, thereby causing impairment of mitochondrial translation. Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA mutations. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees.
    American Journal of Medical Genetics Part A 11/2006; 140(20):2188-97. · 2.30 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.
    Biochemical and Biophysical Research Communications 10/2006; 348(1):115-9. · 2.41 Impact Factor

Publication Stats

958 Citations
177 Downloads
2k Views
164.82 Total Impact Points

Institutions

  • 2005–2012
    • Wenzhou Medical College
      • • School of Life Sciences
      • • Zhejiang Provincial Key Laboratory of Medical Genetics
      Yung-chia, Zhejiang Sheng, China
  • 2011
    • Zhejiang University
      • Institute of Genetics
      Hangzhou, Zhejiang Sheng, China
  • 2010
    • University of Cincinnati
      • Department of Pediatrics
      Cincinnati, Ohio, United States
  • 2002–2010
    • Cincinnati Children's Hospital Medical Center
      • Division of Human Genetics
      Cincinnati, OH, United States
  • 2009
    • 307 Hospital of the Chinese People's Liberation Army
      Peping, Beijing, China
  • 2005–2006
    • Chinese PLA General Hospital (301 Hospital)
      Peping, Beijing, China