D Huyskens

Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, England, United Kingdom

Are you D Huyskens?

Claim your profile

Publications (44)144.22 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the study is to characterize the prototype of the new Octavius1500 (PTW, Freiburg, Germany) 2D ion chamber array, covering its use in different phantom setups, from the most basic solid water sandwich setup to the more complex cylindrical Octavius(®) 4D (Oct4D) (PTW) phantom/detector combination. The new detector houses nearly twice the amount of ion chambers as its predecessors (Seven29 and Octavius729), thereby tackling one of the most important limitations of ion chamber (or diode) arrays, namely the limited detector density. The 0.06 cm(3) cubic ion chambers are now arranged in a checkerboard pattern, leaving no lines (neither longitudinally nor laterally) without detectors.
    Medical physics. 09/2014; 41(9):091708.
  • International journal of radiation oncology, biology, physics 10/2013; Volume 87(Issue 2):Pages S730-S731. · 4.59 Impact Factor
  • Source
    Ann Van Esch, Dominique P Huyskens, Lukas Hirschi, Christof Baltes
    [Show abstract] [Hide abstract]
    ABSTRACT: Although much literature has been devoted to portal dosimetry with the Varian amorphous silicon (aSi) portal imager, the majority of the described methods are not routinely adopted because implementation procedures are cumbersome and not within easy reach of most radiotherapy centers. To make improved portal dosimetry solutions more generally available, we have investigated the possibility of converting optimized configurations into ready-to-use standardized datasets. Firstly, for all commonly used photon energies (6, 10, 15, 18, and 20 MV), basic beam data acquired on 20 aSi panels were used to assess the interpanel reproducibility. Secondly, a standardized portal dose image prediction (PDIP) algorithm configuration was created for every energy, using a three-step process to optimize the aSi dose response function and profile correction files for the dosimetric calibration of the imager panel. An approximate correction of the backscatter of the Exact arm was also incorporated. Thirdly, a set of validation fields was assembled to assess the accuracy of the standardized configuration. Variations in the basic beam data measured on different aSi panels very rarely exceeded 2% (2 mm) and are of the same order of magnitude as variations between different Clinacs when measuring in reference conditions in water. All studied aSi panels can hence be regarded as nearly identical. Standardized datasets were successfully created and implemented. The test package proved useful in highlighting possible problems and illustrating remaining limitations, but also in demonstrating the good overall results (95% pass rate for 3%,3 mm) that can be obtained. The dosimetric behavior of all tested aSi panels was found to be nearly identical for all tested energies. The approach of using standardized datasets was then successfully tested through the creation and evaluation of PDIP preconfigured datasets that can be used within the Varian portal dosimetry solution.
    Journal of Applied Clinical Medical Physics 01/2013; 14(6):4286. · 0.96 Impact Factor
  • Source
    Radiotherapy and Oncology 05/2012; · 4.52 Impact Factor
  • International journal of radiation oncology, biology, physics 10/2011; Volume 81(Issue 2-Volume 81):Page S837. · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution. The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID). First, a number of complementary machine QA tests were developed to monitor the correct interplay between the accelerating/decelerating gantry, the variable dose rate and the MLC position, straining the delivery to the maximum allowed limits. Second, a systematic approach to the validation of the dose calculation for RA was adopted, starting with static gantry and RA specific static MLC shapes and gradually moving to dynamic gantry, dynamic MLC shapes. RA plans were then optimized on a series of artificial structures created within the homogeneous Octavius phantom and within a heterogeneous lung phantom. These served the double purpose of testing the behavior of the optimization algorithm (PRO) as well as the precision of the forward dose calculation. Finally, patient QA on a series of clinical cases was performed with different methods. In addition to the well established in-phantom QA, we evaluated the portal dosimetry solution within the Varian approach. For routine machine QA, the "Snooker Cue" test on the EPID proved to be the most sensitive to overall problem detection. It is also the most practical one. The "Twinkle" and "Sunrise" tests were useful to obtain well differentiated information on the individual treatment delivery components. The AAA8.9 dose calculations showed excellent agreement with all corresponding measurements, except in areas where the 2.5 mm fixed fluence resolution was insufficient to accurately model the tongue and groove effect or the dose through nearly closed opposing leafs. Such cases benefited from the increased fluence resolution in AAA10.0. In the clinical RA fields, these effects were smeared out spatially and the impact of the fluence resolution was considerably less pronounced. The RA plans on the artificial structure sets demonstrated some interesting characteristics of the PRO8.9 optimizer, such as a sometimes unexpected dependence on the collimator rotation and a suboptimal coverage of targets within lung tissue. Although the portal dosimetry was successfully validated, we are reluctant to use it as a sole means of patient QA as long as no gantry angle information is embedded. The all-in validation program allows a systematic approach in monitoring the different levels of RA treatments. With the systematic approach comes a better understanding of both the capabilities and the limits of the used solution. The program can be useful for implementation, but also for the validation of major upgrades.
    Medical Physics 09/2011; 38(9):5146-66. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work is to provide guidelines for the routine use of portal dosimetry and in vivo diode measurements to verify intensity-modulated radiotherapy (IMRT) treatments. To achieve tolerance levels that are sensitive enough to intercept problems, both the portal dosimetry and the in vivo procedure must be optimised. Portal dosimetry was improved by the introduction of an optimised two-dimensional (2D) profile correction, which also accounted for the effect of backscatter from the R-arm. The scaled score, indicating the fraction of points not meeting the desired gamma evaluation criteria within the field opening, was determined as the parameter of interest. Using gamma criteria of a 3% dose difference and 3 mm distance to agreement, a "scaled score" threshold value of 1.5% was chosen to indicate excessive tongue and groove and other problems. The pre-treatment portal dosimetry quality assurance (QA) does not encompass verification of the patient dose calculation or position, and so it is complemented by in vivo diode measurements. Diode positioning is crucial in IMRT, and so we describe a method for diode positioning at any suitable point. We achieved 95% of IMRT field measurements within ±5% and 99% within ±8%, with improved accuracy being achieved over time owing to better positioning. Although the careful preparation and setup of the diode measurements can be time-consuming, this is compensated for by the time efficiency of the optimised procedure. Both methods are now easily absorbed into the routine work of the department.
    The British journal of radiology 11/2010; 83(995):949-57. · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EORTC trial 22991 was designed to evaluate the addition of concomitant and adjuvant short-term hormonal treatments to curative radiotherapy in terms of disease-free survival for patients with intermediate risk localized prostate cancer. In order to assess the compliance to the 3D conformal radiotherapy protocol guidelines, all participating centres were requested to participate in a dummy run procedure. An individual case review was performed for the largest recruiting centres as well. CT-data of an eligible prostate cancer patient were sent to 30 centres including a description of the clinical case. The investigator was requested to delineate the volumes of interest and to perform treatment planning according to the protocol. Thereafter, the investigators of the 12 most actively recruiting centres were requested to provide data on five randomly selected patients for an individual case review. Volume delineation varied significantly between investigators. Dose constraints for organs at risk (rectum, bladder, hips) were difficult to meet. In the individual case review, no major protocol deviations were observed, but a number of dose reporting problems were documented for centres using IMRT. Overall, results of this quality assurance program were satisfactory. The efficacy of the combination of a dummy run procedure with an individual case review is confirmed in this study, as none of the evaluated patient files harboured a major protocol deviation. Quality assurance remains a very important tool in radiotherapy to increase the reliability of the trial results. Special attention should be given when designing quality assurance programs for more complex irradiation techniques.
    Radiotherapy and Oncology 12/2008; 90(3):285-90. · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work describes the clinical validation of an automatic segmentation algorithm in CT-based radiotherapy planning for prostate cancer patients. The validated auto-segmentation algorithm (Smart Segmentation, version 1.0.05) is a rule-based algorithm using anatomical reference points and organ-specific segmentation methods, developed by Varian Medical Systems (Varian Medical Systems iLab, Baden, Switzerland). For the qualitative analysis, 39 prostate patients are analysed by six clinicians. Clinicians are asked to rate the auto-segmented organs (prostate, bladder, rectum and femoral heads) and to indicate the number of slices to correct. For the quantitative analysis, seven radiation oncologists are asked to contour seven prostate patients. The individual clinician contour variations are compared to the automatic contours by means of surface and volume statistics, calculating the relative volume errors and both the volume and slice-by-slice degree of support, a statistical metric developed for the purposes of this validation. The mean time needed for the automatic module to contour the four structures is about one minute on a standard computer. The qualitative evaluation using a score with four levels ("not acceptable", "acceptable", "good" and "excellent") shows that the mean score for the automatically contoured prostate is "good"; the bladder scores between "excellent" and "good"; the rectum scores between "acceptable" and "not acceptable". Using the concept of surface and volume degree of support, the degree of support given to the automatic module is comparable to the relative agreement among the clinicians for prostate and bladder. The slice-by-slice analysis of the surface degree of support pinpointed the areas of disagreement among the clinicians as well as between the clinicians and the automatic module. The efficiency and the limits of the automatic module are investigated with both a qualitative and a quantitative analysis. In general, with efficient correction tools at hand, the use of this auto-segmentation module will lead to a time gain for the prostate and the bladder; with the present version of the algorithm, modelling of the rectum still needs improvement. For the quantitative validation, the concept of relative volume error and degree of support proved very useful.
    Radiotherapy and Oncology 10/2008; 90(3):337-45. · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Automatic segmentation of anatomical structures in medical images is a valuable tool for efficient computer-aided radiotherapy and surgery planning and an enabling technology for dynamic adaptive radiotherapy. This paper presents the design, algorithms and validation of new software for the automatic segmentation of CT images used for radiotherapy treatment planning. A coarse to fine approach is followed that consists of presegmentation, anatomic orientation and structure segmentation. No user input or a priori information about the image content is required. In presegmentation, the body outline, the bones and lung equivalent tissue are detected. Anatomic orientation recognizes the patient's position, orientation and gender and creates an elastic mapping of the slice positions to a reference scale. Structure segmentation is divided into localization, outlining and refinement, performed by procedures with implicit anatomic knowledge using standard image processing operations. The presented version of algorithms automatically segments the body outline and bones in any gender and patient position, the prostate, bladder and femoral heads for male pelvis in supine position, and the spinal canal, lungs, heart and trachea in supine position. The software was developed and tested on a collection of over 600 clinical radiotherapy planning CT stacks. In a qualitative validation on this test collection, anatomic orientation correctly detected gender, patient position and body region in 98% of the cases, a correct mapping was produced for 89% of thorax and 94% of pelvis cases. The average processing time for the entire segmentation of a CT stack was less than 1 min on a standard personal computer. Two independent retrospective studies were carried out for clinical validation. Study I was performed on 66 cases (30 pelvis, 36 thorax) with dosimetrists, study II on 52 cases (39 pelvis, 13 thorax) with radio-oncologists as experts. The experts rated the automatically produced structures on the scale 1-excellent (no corrections necessary, maximum time saving), 2-good (corrections necessary for up to 1/3 of slices), 3-acceptable (major corrections necessary, but still time saving), 4-not acceptable (manual redrawing more efficient, no time saving). A rating<or=3 indicates a time saving in the treatment planning process and was given for pelvis segmentation in 70% (I) and 68% (II) of the cases, with average ratings 2.9 (I) and 2.6 (II). For the thorax, a rating<or=3 was given in 94% and 91% of the cases, with average ratings 2.1 and 1.9, respectively. For quantitative validation, automatically generated structures were compared geometrically in 2D and 3D to manually drawn structures created by experts on seven randomly selected cases. The quantitative validation was limited to pelvis structures. The results indicate that the accuracy of the algorithms is within the bandwidth of manual segmentation by experts, except for specific erroneous situations. Even though manual review and corrections of automatically segmented structures are still mandatory, it can be expected that due to the speed of the presented software and the quality of its results, its introduction in the radiotherapy treatment planning process will lead to a considerable amount of time being saved.
    Physics in Medicine and Biology 03/2008; 53(6):1751-71. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of various tissue equivalent materials of different densities. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments. Quality control of TomoTherapy patients was reduced to a total of approximately 25 min per patient.
    Medical Physics 11/2007; 34(10):3825-37. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To reduce the dose to the heart during left breast irradiation, a moderate deep breath hold technique (MDIBH) was introduced. Originally, verification of the MDIBH was performed with portal images acquired in movie loop during the treatment delivery. However, this verification method is not compatible with the use of dynamic MLC compensation, recently introduced because of its often superior dose distribution. Magnetic sensors were evaluated as an additional/alternative method to monitor the breath hold. In a first phase, the reproducibility of MDIBH for breast patients was evaluated by investigating for 19 patients the set-up errors derived from portal images in cine loop acquisition during MDIBH. In a second phase, for 10 patients, the breathing curves recorded by magnetic sensors were used to monitor beam-on and beam-off while portal images were simultaneously recorded in movie loop. In a third phase, breast patients treated with dynamic MLC compensation were trained for MDIBH and monitored with magnetic sensors. The interfraction reproducibility of MDIBH for the initial 19 patients was recorded: the mean set-up error, the systematic and the random deviations are all smaller than 4mm in the anterior-posterior direction and in the cranio-caudal direction and smaller than 2 degrees along the rotation axis. Magnetic sensors provided a reproducible breathing curve: while the mean amplitude recorded for 10 patients varied substantially between patients, the individual standard deviation of the amplitude for each session was smaller than 3mm. For these 10 patients, the intrafraction set-up variation between the first portal image of two consecutive breath holds and the intra-breath hold set-up variation between the first and last portal image of each breath hold is smaller than 2mm in the anterior-posterior direction, smaller than 3mm in the cranio-caudal direction and smaller than 1.5 degrees along the rotation axis. Using magnetic sensors to record the breathing curve of left breast patients in MDIBH, a verification method was developed, suitable for combining MDIBH with dynamic MLC compensation.
    Radiotherapy and Oncology 04/2007; 82(3):341-8. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below dmax. The electron contamination model was found to be suboptimal to model the dose around dmax, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies.
    Medical Physics 12/2006; 33(11):4130-48. · 2.91 Impact Factor
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2005; 63.
  • Source
    Ans Swinnen, Jan Verstraete, Dominique Pierre Huyskens
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work is to set-up mailed entrance in vivo dosimetry by means of thermoluminescence dosimeters (TLDs) in the form of LiF powder in order to assess the overall accuracy of patient treatment delivery by comparing the doses delivered to patients with the doses calculated by the treatment planning system (TPS) in different institutions. Two millimeter thick copper (for 6 MV photon beams) and 1.3 mm thick aluminium (for (60)Co gamma beams) build-up caps are developed. The characteristics of these build-up caps are tested by phantom measurements: the response of the TLD inside the build-up cap is compared to the ionisation chamber (IC) signal in the same irradiation conditions. A pilot study using the copper build-up cap is performed on 8 patients, treated with a 6 MV photon beam at the radiotherapy department of the University Hospital of Leuven. Additionally, a first run of mailed entrance in vivo dosimetry is performed by 18 radiotherapy centres in Europe. For 80 different phantom set-ups using copper and aluminium build-up caps, the mean TLD dose compared to the IC dose is 0.993+/-0.015 (1SD). Regarding the patient measurements in the radiotherapy department of the University Hospital of Leuven, the mean ratio of the measured entrance dose (TLD) to the entrance dose calculated by the TPS, is equal to 0.986+/-0.017 (1SD) (N=8), after correction of an error detected in one of the patient treatments. For the 18 radiotherapy centres participating in the mailed in vivo TLD study, the mean measured versus stated entrance dose for patients treated in a (60)Co and 6 MV photon beam is 1.004+/-0.021 (1SD) (N=143). From the results, it can be deduced that the build-up caps and the proposed calibration methodology allow the use of TLD in the form of powder to be applied in large scale in vivo dose audits.
    Radiotherapy and Oncology 11/2004; 73(1):89-96. · 4.52 Impact Factor
  • Source
    Ann Van Esch, Tom Depuydt, Dominique Pierre Huyskens
    [Show abstract] [Hide abstract]
    ABSTRACT: In parallel with the increased use of intensity modulated radiation treatment (IMRT) fields in radiation therapy, flat panel amorphous silicon (aSi) detectors are becoming the standard for online portal imaging at the linear accelerator. In order to minimise the workload related to the quality assurance of the IMRT fields, we have explored the possibility of using a commercially available aSi portal imager for absolute dosimetric verification of the delivery of dynamic IMRT fields. We investigated the basic dosimetric characteristics of an aSi portal imager (aS500, Varian Medical Systems), using an acquisition mode especially developed for portal dose (PD) integration during delivery of a-static or dynamic-radiation field. Secondly, the dose calculation algorithm of a commercially available treatment planning system (Cadplan, Varian Medical Systems) was modified to allow prediction of the PD image, i.e. to compare the intended fluence distribution with the fluence distribution as actually delivered by the dynamic multileaf collimator. Absolute rather than relative dose prediction was applied. The PD image prediction was compared to the corresponding acquisition for several clinical IMRT fields by means of the gamma evaluation method. The acquisition mode is accurate in integrating all PD over a wide range of monitor units, provided detector saturation is avoided. Although the dose deposition behaviour in the portal image detector is not equivalent to the dose to water measurements, it is reproducible and self-consistent, lending itself to quality assurance measurements. Gamma evaluations of the predicted versus measured PD distribution were within the pre-defined acceptance criteria for all clinical IMRT fields, i.e. allowing a dose difference of 3% of the local field dose in combination with a distance to agreement of 3 mm.
    Radiotherapy and Oncology 06/2004; 71(2):223-34. · 4.52 Impact Factor
  • Tijdschrift voor Geneeskunde 01/2004; 60(2):98-105.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess consistency among participants in an European Organisation for Research and Treatment of Cancer (EORTC) phase III trial randomising between irradiation and no irradiation of the internal mammary and medial supraclavicular (IM-MS) lymph nodes, all participating institutes were invited to send data from 3 patients in each arm as soon as they started accrual. The evaluation focused on eligibility, compliance with the radiotherapy guidelines, treatment techniques and dose prescription to the IM-MS region. Nineteen radiotherapy departments provided a total of 111 cases, all being eligible. Minor discrepancies were found in the surgery and pathology data in almost half the patients. Major radiotherapy protocol deviations were very limited: 2 cases of unwarranted irradiation of the supraclavicular region and a significant dose deviation to the internal mammary region in 5 patients. The most frequently observed minor protocol deviation was the absence of delineation of the target volumes in 80% of the patients. By detecting systematic protocol deviations in an early phase of the trial, recommendations made to all the participating institutes should improve the interinstitutional consistency and promote a high-quality treatment.
    European Journal of Cancer 10/2003; 39(14):2035-42. · 5.06 Impact Factor
  • Dominique Huyskens
    International Journal of Radiation OncologyBiologyPhysics 07/2003; 56(4):1208-1208. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An increasing number of radiotherapy centres is now aiming for clinical implementation of intensity modulated radiotherapy (IMRT), but--in contrast to conventional treatment--no national or international guidelines for commissioning of the treatment planning system (TPS) and acceptance tests of treatment equipment have yet been developed. This paper bundles the experience of five radiotherapy departments that have introduced IMRT into their clinical routine. The five radiotherapy departments are using similar configurations since they adopted the commercially available Varian solution for IMRT, regarding treatment planning as well as treatment delivery. All are using the sliding window technique. Different approaches towards the derivation of the multileaf collimator (MLC) parameters required for the configuration of the TPS are described. A description of the quality control procedures for the dynamic MLC, including their respective frequencies, is given. For the acceptance of the TPS for IMRT multiple quality control plans were developed on a variety of phantoms, testing the flexibility of the inverse planning modules to produce the desired dose pattern as well as assessing the accuracy of the dose calculation. Regarding patient treatment verification, all five centres perform dosimetric pre-treatment verification of the treatment fields, be it on a single field or on a total plan procedure. During the actual treatment, the primary focus is on patient positioning rather than dosimetry. Intracavitary in vivo measurements were performed in special cases. The configurational MLC parameters obtained through different methods are not identical for all centres, but the observed variations have shown to be of no significant clinical relevance. The quality control (QC) procedures for the dMLC have not detected any discrepancies since their initiation, demonstrating the reliability of the MLC controller. The development of geometrically simple QC plans to test the inverse planning, the dynamic MLC modules and the final dose calculation has proven to be useful in pointing out the need to remodel the single pencil beam scatter kernels in some centres. The final correspondence between calculated and measured dose was found to be satisfactory by all centres, for QC test plans as well as for pre-treatment verification of clinical IMRT fields. An intercomparison of the man hours needed per patient plan verification reveals a substantial variation depending on the type of measurements performed.
    Radiotherapy and Oncology 11/2002; 65(1):53-70. · 4.52 Impact Factor

Publication Stats

932 Citations
144.22 Total Impact Points

Institutions

  • 2010
    • Norfolk and Norwich University Hospitals NHS Foundation Trust
      Norwich, England, United Kingdom
  • 2008
    • Lindenhofspital Bern
      Berna, Bern, Switzerland
  • 2006–2007
    • Clinique Maternité Sainte-Elisabeth
      Namen, Walloon Region, Belgium
  • 1997–2004
    • Universitair Ziekenhuis Leuven
      • Department of Radiation oncology
      Leuven, VLG, Belgium
  • 2001
    • KU Leuven
      • Department of Oncology
      Leuven, VLG, Belgium
    • Greater Poland Cancer Centre
      Posen, Greater Poland Voivodeship, Poland
  • 2000
    • Institut de Cancérologie Gustave Roussy
      Île-de-France, France