Christine Blattner

Karlsruhe Institute of Technology, Carlsruhe, Baden-Württemberg, Germany

Are you Christine Blattner?

Claim your profile

Publications (38)175.35 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor p53 regulates the expression of genes involved in cell cycle progression, senescence and apoptosis. Here, we investigated the effect of single point mutations in the oligomerization domain (OD) on tetramerization, transcription, ubiquitylation and stability of p53. As predicted by docking and molecular dynamics simulations, p53 OD mutants show functional defects on transcription, Mdm2-dependent ubiquitylation and 26S proteasome-mediated degradation. However, mutants unable to form tetramers are well degraded by the 20S proteasome. Unexpectedly, despite the lower structural stability compared to WT p53, p53 OD mutants form heterotetramers with WT p53 when expressed transiently or stably in cells wild type or null for p53. In consequence, p53 OD mutants interfere with the capacity of WT p53 tetramers to be properly ubiquitylated and result in changes of p53-dependent protein expression patterns, including the pro-apoptotic proteins Bax and PUMA under basal and adriamycin-induced conditions. Importantly, the patient derived p53 OD mutant L330R (OD1) showed the more severe changes in p53-dependent gene expression. Thus, in addition to the well-known effects on p53 stability, ubiquitylation defects promote changes in p53-dependent gene expression with implications on some of its functions.
    Molecular oncology 04/2014; · 6.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor p53 regulates the expression of genes involved in cell cycle progression, senescence and apoptosis. Here, we investigated the effect of single point mutations in the oligomerization domain (OD) on tetramerization, transcription, ubiquitylation and stability of p53. As predicted by docking and molecular dynamics simulations, p53 OD mutants show functional defects on transcription, Mdm2-dependent ubiquitylation and 26S proteasome-mediated degradation. However, mutants unable to form tetramers are well degraded by the 20S proteasome. Unexpectedly, despite the lower structural stability compared to WT p53, p53 OD mutants form heterotetramers with WT p53 when expressed transiently or stably in cells wild type or null for p53. In consequence, p53 OD mutants interfere with the capacity of WT p53 tetramers to be properly ubiquitylated and result in changes of p53-dependent protein expression patterns, including the pro-apoptotic proteins Bax and PUMA under basal and adriamycin-induced conditions. Importantly, the patient derived p53 OD mutant L330R (OD1) showed the more severe changes in p53-dependent gene expression. Thus, in addition to the well-known effects on p53 stability, ubiquitylation defects promote changes in p53-dependent gene expression with implications on some of its functions.
    Molecular Oncology 01/2014; · 6.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Human Papillomavirus E6 oncoproteins have the capacity to target several of their cellular interacting partners for proteasome mediated degradation, and recent proteomic analyses suggest a close involvement of E6 with the cellular proteasome machinery. In this study we have performed an extensive analysis of the capacity of different E6 oncoproteins to interact with specific proteasome components. We demonstrate that multiple subunits of the proteasome can be bound by different HPV E6 oncoproteins. Furthermore, whilst most of these interactions appear independent of the E6AP ubiquitin ligase, the association of E6 with the major ubiquitin-accepting proteasome subunit, S5a, does require the presence of E6AP. One consequence of the interaction between E6/E6AP and S5a is enhanced ubiquitination of this proteasome subunit. These results suggest a complex interplay between E6 and the proteasome, only some aspects of which are dependent upon the E6AP ubiquitin ligase.
    Virology 11/2013; 446(1-2):389-96. · 3.35 Impact Factor
  • Source
    DNA Tumour Virus Meeting, Birmingham, UK; 07/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting "Signal Transduction: Receptors, Mediators and Genes" together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference.
    Cell Communication and Signaling 04/2012; 10(1):11. · 5.09 Impact Factor
  • Source
    Breast Cancer Research 04/2012; 2:1-1. · 5.33 Impact Factor
  • Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: Comment on: Dolezelova P, et al. Cell Cycle 2012; 11:953-962.
    Cell cycle (Georgetown, Tex.) 04/2012; 11(7):1269-70. · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. Here, we show that exposure of normal human fibroblasts to X-rays or to H2O2 also induces nuclear accumulations of CDKN1A. We find that CDKN1A foci formation in response to radiation damage is dependent on its dephosphorylation and on its direct physical interaction with PCNA. Live cell imaging analyses of ectopically expressed EGFP-CDKN1A and dsRed-PCNA show rapid recruitment of both proteins into foci after radiation damage. Detailed dynamic measurements reveal a slightly delayed recruitment of CDKN1A compared to PCNA, which is best described by bi-exponential curve fitting, taking the preceding binding of PCNA to DNA into account. We propose a regulatory role for CDKN1A in mediating PCNA function after radiation damage, and provide evidence that this role is distinct from its involvement in nucleotide excision repair and unrelated to double-strand break repair.
    DNA repair 03/2012; 11(5):511-21. · 4.20 Impact Factor
  • Source
    Valeriya Solozobova, Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: p53 is well known as a "guardian of the genome" for differentiated cells, in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability. In addition to this tumor suppressor function for differentiated cells, p53 also plays an important role in stem cells. In this cell type, p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation. Additionally, p53 provides an effective barrier for the generation of pluripotent stem cell-like cells from terminally differentiated cells. In this review, we summarize our current knowledge about p53 activities in embryonic, adult and induced pluripotent stem cells.
    World journal of biological chemistry. 09/2011; 2(9):202-14.
  • Source
    Volker Middel, Christine Blattner
    DNA Repair - On the Pathways to Fixing DNA Damage and Errors, 09/2011; , ISBN: 978-953-307-649-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of cancer in patients with neurological diseases, who have been treated with LiCl, is below average. LiCl is a well-established inhibitor of Glycogen synthase kinase-3, a kinase that controls several cellular processes, among which is the degradation of the tumour suppressor protein p53. We therefore wondered whether LiCl induces p53-dependent cell death in cancer cell lines and experimental tumours. Here we show that LiCl induces apoptosis of tumour cells both in vitro and in vivo. Cell death was accompanied by cleavage of PARP and Caspases-3, -8 and -10. LiCl-induced cell death was not dependent on p53, but was augmented by its presence. Treatment of tumour cells with LiCl strongly increased TNF-α and FasL expression. Inhibition of TNF-α induction using siRNA or inhibition of FasL binding to its receptor by the Nok-1 antibody potently reduced LiCl-dependent cleavage of Caspase-3 and increased cell survival. Treatment of xenografted rats with LiCl strongly reduced tumour growth. Induction of cell death by LiCl supports the notion that GSK-3 may represent a promising target for cancer therapy. LiCl-induced cell death is largely independent of p53 and mediated by the release of TNF-α and FasL.Key words: LiCl, TNF-α, FasL, apoptosis, GSK-3, FasL.
    Cell Communication and Signaling 01/2011; 9:15. · 5.09 Impact Factor
  • Valeriya Solozobova, Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type. We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b.
    Experimental Cell Research 09/2010; 316(15):2434-46. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin ligase Mdm2 targets the p53 tumor suppressor protein for proteasomal degradation. Mutating phosphorylation sites in the central domain of Mdm2 prevents p53 degradation, although it is still ubiquitylated, indicating that Mdm2 has a post-ubiquitylation function for p53 degradation. We show that Mdm2 associates with several subunits of the 19S proteasome regulatory particle in a ubiquitylation-independent manner. Mdm2 furthermore promotes the formation of a ternary complex of itself, p53, and the proteasome. Replacing phosphorylation sites within the central domain with alanines reduced the formation of the ternary complex. The C-terminus of Mdm2 was sufficient for interaction with the proteasome despite an additional proteasome binding site in the Mdm2 N-terminus. In addition to binding to the proteasome, the C-terminus of Mdm2 bound to the central domain, possibly competing with, and therefore blocking, Mdm2/proteasome interaction. We propose that Mdm2 facilitates, or at least enhances, the association of p53 with the proteasome and that phosphorylation of the central domain of Mdm2 regulates this process.
    Proceedings of the National Academy of Sciences 06/2010; 107(22):10038-43. · 9.81 Impact Factor
  • Source
    C Oberle, C Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.
    Current Genomics 05/2010; 11(3):184-98. · 2.48 Impact Factor
  • Karen A. Boehme, Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: P53 is one of the most important tumour suppressor proteins. While its activity seems to be dispensable for normal proliferating cells, this protein is required to maintain genomic integrity after DNA damage. In response to cellular stress, the amount of p53 protein accumulates and fulfils its function as a transcription factor. Most of the genes that are regulated by p53 control progression through the cell cycle or initiate cell death. A large number of proteins have been identified in recent years that control the activity of this important tumour suppressor protein. These proteins regulate the turnover of p53, its association with co-repressor and co-activator proteins and target gene promoters or impinge on p53 oligomerisation. This review shall give an overview of our current knowledge on how the activity of the p53 protein is controlled.
    Current Chemical Biology 12/2009; 4(1):1-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.
    BMC Cell Biology 07/2009; 10:46. · 2.81 Impact Factor
  • Source
    Karen A Boehme, Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
    Critical Reviews in Biochemistry and Molecular Biology 01/2009; 44(6):367-92. · 5.58 Impact Factor
  • Source
    Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 protein is one of the most important tumor suppressor proteins. The most prevailing property of this tumor suppressor protein is its activation in response to DNA damage which counteracts the propagation of genetic alterations to daughter cells under conditions that provoke mutagenesis. In response to DNA damage and some other kinds of cellular stress the turnover of p53 is reduced or completely switched-off, which leads to a strong increase in the amount of the p53 protein and subsequently to the implementation of cell cycle arrest and apoptosis. Although post-translational modifications of p53 certainly contribute to the activation of p53 under physiologic conditions, an increase in the amount of the protein e.g., after overexpression, is sufficient for p53's deadly activities. This makes this tumor suppressor protein an interesting target for cancer therapy. This article summarizes the most important principles for the regulation of p53, with a particular focus on recent findings. Furthermore, open questions and possible future directions shall be discussed.
    Cell cycle (Georgetown, Tex.) 11/2008; 7(20):3149-53. · 5.24 Impact Factor
  • Source
    Karen A Boehme, Roman Kulikov, Christine Blattner
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 protein is one of the major tumor suppressor proteins. In response to DNA damage, p53 is prevented from degradation and accumulates to high levels. Ionizing radiation leads to hypophosphorylation of the p53 ubiquitin ligase Mdm2 at sites where phosphorylation is critical for p53 degradation and to the phosphorylation and activation of Akt/PKB, a kinase that phosphorylates and inhibits GSK-3. GSK-3, which normally phosphorylates Mdm2, is inactivated in response to ionizing radiation. We show that p53 accumulates in lymphoblasts from patients with the hereditary disorder ataxia telangiectasia in response to ionizing radiation despite the absence of a functional ATM kinase. Also, knockdown of ATR did not prevent p53 accumulation in response to ionizing radiation. Instead, p53 stabilization in response to ionizing radiation depended on the inactivation of GSK-3 and the presence of Akt/PKB. Akt/PKB is a target of DNA-PK, a kinase that is activated after ionizing radiation. Correspondingly, down-regulation of DNA-PK prevented phosphorylation of Akt/PKB and GSK-3 after ionizing radiation and strongly reduced the accumulation of p53. We therefore propose a signaling cascade for the regulation of p53 in response to ionizing radiation that involves activation of DNA-PK and Akt/PKB and inactivation of GSK-3 and Mdm2.
    Proceedings of the National Academy of Sciences 07/2008; 105(22):7785-90. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have shown previously that MDM2 promotes the degradation of the cyclin-dependent kinase inhibitor p21 through a ubiquitin-independent proteolytic pathway. Here we report that the MDM2 analog, MDMX, also displays a similar activity. MDMX directly bound to p21 and mediated its proteasomal degradation. Although the MDMX effect was independent of MDM2, they synergistically promoted p21 degradation when coexpressed in cells. This degradation appears to be mediated by the 26S proteasome, as MDMX and p21 bound to S2, one of the subunits of the 19S component of the 26S proteasome, in vivo. Conversely, knockdown of MDMX induced the level of endogenous p21 proteins that no longer cofractionated with 26S proteasome, resulting in G(1) arrest. The level of p21 was low at early S phase but markedly induced by knocking down either MDMX or MDM2 in human cells. Ablation of p21 rescued the G(1) arrest caused by double depletion of MDM2 and MDMX in p53-null cells. These results demonstrate that MDMX and MDM2 independently and cooperatively regulate the proteasome-mediated degradation of p21 at the G(1) and early S phases.
    Molecular and cellular biology 03/2008; 28(4):1218-29. · 6.06 Impact Factor

Publication Stats

1k Citations
175.35 Total Impact Points

Institutions

  • 2000–2014
    • Karlsruhe Institute of Technology
      • Institute of Toxicology and Genetics
      Carlsruhe, Baden-Württemberg, Germany
  • 1999–2012
    • University of Dundee
      • Institute for Medical Science and Technology (IMSaT)
      Dundee, Scotland, United Kingdom
  • 2004
    • University of Cologne
      • Center for Biochemistry
      Köln, North Rhine-Westphalia, Germany