Are you Claudia Apicella?

Claim your profile

Publications (4)20.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of the serotonin 4 receptor (5-HT(4)R), a large number of receptor ligands have been studied. The safety concerns and the lack of market success of these ligands have mainly been attributed to their lack of selectivity. In this study we describe the discovery of N-[(4-piperidinyl)methyl]-1H-indazole-3-carboxamide and 4-[(4-piperidinyl)methoxy]-2H-pyrrolo[3,4-c]quinoline derivatives as new 5-HT(4)R ligands endowed with high selectivity over the serotonin 2A receptor and human ether-a-go-go-related gene potassium ion channel. Within these series, two molecules (11ab and 12g) were identified as potent and selective 5-HT(4)R antagonists with good in vitro pharmacokinetic properties. These compounds were evaluated for their antinociceptive action in two analgesia animal models. 12g showed a significant antinociceptive effect in both models and is proposed as an interesting lead compound as a 5-HT(4)R antagonist with analgesic action.
    Journal of Medicinal Chemistry 10/2012; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alphaviruses such as chikungunya virus, Sindbis virus, o'nyong-nyong virus, Mayaro virus, and Ross River virus (RRV), are commonly associated with arthralgias and overt arthritides worldwide. Understanding the processes by which arthritogenic viruses cause disease is a prerequisite in the quest for better treatments. In this regard, we have recently established that monocyte/macrophages are mediators of alphavirus-induced arthritis in mice. We hypothesized that chemokines associated with monocyte/macrophage recruitment may play an important role in disease. The aim of the present investigations was to determine whether bindarit, an inhibitor of monocyte chemotactic protein (MCP) synthesis, could ameliorate alphavirus-induced rheumatic disease in mice. Using our recently developed mouse model of RRV-induced arthritis, which has many characteristics of RRV disease (RRVD) in humans, the effects of bindarit treatment on RRVD in mice were determined via histologic analyses, immunohistochemistry, flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay. Bindarit-treated RRV-infected mice developed mild disease and had substantially reduced tissue destruction and inflammatory cell recruitment as compared with untreated RRV-infected mice. The virus load in the tissues was not affected by bindarit treatment. Bindarit exhibited its activity by down-regulating MCPs, which in turn led to inhibition of cell infiltration and lower production of NF-kappaB and tumor necrosis factor alpha, which are involved in mediating tissue damage. Our data support the use of inhibitors of MCP production in the treatment of arthritogenic alphavirus syndromes and suggest that bindarit may be useful in treating RRVD and other alphavirus-induced arthritides in humans.
    Arthritis & Rheumatology 08/2009; 60(8):2513-23. · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human Rhinovirus (HRV) is the most important aetiologic agent of common cold in adults and children. HRV is a single-stranded, positive sense RNA virus and, despite the high level of conservation among different serotypes, sequence alignment of viral protease 3C with mammalian protease reveals no homology. Thus, protease 3C is an optimal target for the development of anti-HRV agents. In the present work we investigated the design, the synthesis and the development of new potential reversible inhibitors against HRV protease 3C. Docking studies on the crystallized structure of HRV2 protease 3C led us to the design and the synthesis of a series of 3,5 disubstituted benzamides able to act as analogues of the substrate. We also developed 1,3,5 trisubstituted benzamides where aromatic substitutions on the aryl ring led us to investigate the importance of pi-pi interaction on the stabilization of protease 3C-inhibitor complex. All structures were tested for enzymatic inhibition on HRV14 protease 3C. Results highlighted the inhibitory activity of compounds 13, 14, and 20 (91%, 81%, and 85% at 10 microM, respectively), with the latter exhibiting an ID(50) (dose that inhibits 50% of the viral cytopathic effect) on HRV-14=25 microg/ml.
    Bioorganic & medicinal chemistry 04/2008; 16(6):3091-107. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PGs are potent mediators of pain and inflammation. PGE synthases (PGES) catalyze the isomerization of PGH(2) into PGE(2). The microsomal (m)PGES-1 isoform serves as an inducible PGES and is responsible for the production of PGE(2), which mediates acute pain in inflammation and fever. The present study was designed to investigate the regulation of expression of mPGES-1 in polarized phagocytes, which represent central, cellular orchestrators of inflammatory reactions. Here, we report that human peripheral blood monocytes did not express mPGES-1. Exposure to LPS strongly induced mPGES-1 expression. Alternatively activated M2 monocytes-macrophages exposed to IL-4, IL-13, or IL-10 did not express mPGES-1, whereas in these cells, IL-4, IL-13, and to a lesser extent, IL-10 or IFN-gamma inhibited LPS-induced, mPGES-1 expression. It is unexpected that polymorphonuclear leukocytes expressed high basal levels of mPGES-1, which was up-regulated by LPS and down-regulated by IL-4 and IL-13. Induction of mPGES-1 and its modulation by cytokines were confirmed at the protein level and correlated with PGE(2) production. Cyclooxygenase 2 expression tested in the same experimental conditions was modulated in monocytes and granulocytes similarly to mPGES-1. Thus, activated M1, unlike alternatively activated M2, mononuclear phagocytes express mPGES-1, and IL-4, IL-13, and IL-10 tune expression of this key enzyme in prostanoid metabolism. Neutrophils, the first cells to enter sites of inflammation, represent a ready-made, cellular source of mPGES-1.
    Journal of Leukocyte Biology 09/2007; 82(2):320-6. · 4.57 Impact Factor