Sterling C Johnson

University of Wisconsin–Madison, Madison, Wisconsin, United States

Are you Sterling C Johnson?

Claim your profile

Publications (138)506.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiorespiratory fitness (CRF) is an objective measure of habitual physical activity (PA), and has been linked to increased brain structure and cognition. The gold standard method for measuring CRF is graded exercise testing (GXT), but GXT is not feasible in many settings. The objective of this study was to examine whether a non-exercise estimate of CRF is related to gray matter (GM) volumes, white matter hyperintensities (WMH), cognition, objective and subjective memory function, and mood in a middle-aged cohort at risk for Alzheimer's disease (AD). Three hundred and fifteen cognitively healthy adults (mean age =58.58 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent structural MRI scanning, cognitive testing, anthropometric assessment, venipuncture for laboratory tests, and completed a self-reported PA questionnaire. A subset (n = 85) underwent maximal GXT. CRF was estimated using a previously validated equation incorporating sex, age, body-mass index, resting heart rate, and self-reported PA. Results indicated that the CRF estimate was significantly associated with GXT-derived peak oxygen consumption, validating its use as a non-exercise CRF measure in our sample. Support for this finding was seen in significant associations between the CRF estimate and several cardiovascular risk factors. Higher CRF was associated with greater GM volumes in several AD-relevant brain regions including the hippocampus, amygdala, precuneus, supramarginal gyrus, and rostral middle frontal gyrus. Increased CRF was also associated with lower WMH and better cognitive performance in Verbal Learning & Memory, Speed & Flexibility, and Visuospatial Ability. Lastly, CRF was negatively correlated with self- and informant-reported memory complaints, and depressive symptoms. Together, these findings suggest that habitual participation in physical activity may provide protection for brain structure and cognitive function, thereby decreasing future risk for AD.
    Brain Imaging and Behavior 10/2014; · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults.
    Neurology 10/2014; · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly all adults with Down syndrome show neuropathology of Alzheimer's disease, including amyloid-β deposition, by their fifth decade of life. In the current study, we examined the association between brain amyloid-β deposition, assessed via in vivo assessments of neocortical Pittsburgh compound B, and scores on an extensive neuropsychological battery of measures of cognitive functioning in 63 adults (31 male, 32 female) with Down syndrome aged 30-53 years who did not exhibit symptoms of dementia. Twenty-two of the adults with Down syndrome were identified as having elevated neocortical Pittsburgh compound B retention levels. There was a significant positive correlation (r = 0.62, P < 0.0001) between age and neocortical Pittsburgh compound B retention. This robust association makes it difficult to discriminate normative age-related decline in cognitive functioning from any potential effects of amyloid-β deposition. When controlling for chronological age in addition to mental age, there were no significant differences between the adults with Down syndrome who had elevated neocortical Pittsburgh compound B retention levels and those who did not on any of the neuropsychological measures. Similarly, when examining Pittsburgh compound B as a continuous variable, after controlling for mental age and chronological age, only the Rivermead Picture Recognition score was significantly negatively associated with neocortical Pittsburgh compound B retention. Our findings indicate that many adults with Down syndrome can tolerate amyloid-β deposition without deleterious effects on cognitive functioning. However, we may have obscured true effects of amyloid-β deposition by controlling for chronological age in our analyses. Moreover, our sample included adults with Down syndrome who were most 'resistant' to the effects of amyloid-β deposition, as adults already exhibiting clinical symptoms of dementia symptoms were excluded from the study.
    Brain : a journal of neurology. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular studies suggest sphingolipids may cause or accelerate amyloid-beta (Aβ) and tau pathology but in vivo human studies are lacking. We determined cerebrospinal fluid levels of sphingolipids (ceramides and sphingomyelins), amyloid-beta (Aβ1-42, AβX-38, AβX-40, and AβX-42) and tau (T-tau and p-tau181) in 91 cognitively normal individuals, aged 36-69 years, with a parental history of Alzheimer's disease. The 18-carbon acyl chain length ceramide species was associated with AβX-38 (r = 0.312, p = 0.003), AβX-40 (r = 0.327, p = 0.002), and T-tau (r = 0.313, p = 0.003) but not with AβX-42 (r = 0.171, p = 0.106) or p-tau (r = 0.086, p = 0.418). All sphingomyelin species correlated (most p < 0.001) with all Aβ species and T-tau; many also correlated with p-tau. Results remained in regression models after controlling for age and APOE genotype. These results suggest in vivo relationships between cerebrospinal fluid ceramides and sphingomyelins and Aβ and tau levels in cognitively normal individuals at increased risk for Alzheimer's disease, indicating these sphingolipids may be associated with early pathogenesis.
    Neurobiology of aging. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rhesus macaque exhibits age-related brain changes similar to humans, making an excellent model of normal aging. Calorie restriction is a dietary intervention that reduces age-related comorbidities in short-lived animals, and its effects are still under study in rhesus macaques. Here, using deterministic fiber tracking method, we examined the effects of age and calorie restriction on a diffusion tensor imaging measure of white matter integrity, fractional anisotropy (FA), within white matter tracks traversing the anterior (genu) and posterior (splenium) corpus callosum in rhesus monkeys. Our results show: (1) a significant inverse relationship between age and mean FA of tracks traversing the genu and splenium; (2) higher mean FA of the splenium tracks as compared to that of genu tracks across groups; and (3) no significant diet effect on mean track FA through either location. These results are congruent with the age-related decline in white matter integrity reported in humans and monkeys, and the anterior-to-posterior gradient in white matter vulnerability to normal aging in humans. Further studies are warranted to critically evaluate the effect of calorie restriction on brain aging in this unique cohort of elderly primates.
    Neuroscience Letters 03/2014; · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The relative influence of amyloid burden, neuronal structure and function, and prior cognitive performance on prospective memory decline among asymptomatic late middle-aged individuals at risk for Alzheimer's disease (AD) is currently unknown. We investigated this using longitudinal cognitive data from 122 middle-aged adults (21 "Decliners" and 101 "Stables") enrolled in the Wisconsin Registry for Alzheimer's Prevention who underwent multimodality neuroimaging [11C-Pittsburgh Compound B (PiB), 18F-fluorodeoxyglucose (FDG), and structural/functional magnetic resonance imaging (fMRI)] 5.7 ± 1.4 years (range = 2.9-8.9) after their baseline cognitive assessment. Covariate-adjusted regression analyses revealed that the only imaging measure that significantly distinguished Decliners from Stables (p = .027) was a Neuronal Function composite derived from FDG and fMRI. In contrast, several cognitive measures, especially those that tap episodic memory, significantly distinguished the groups (p's<.05). Complementary receiver operating characteristic curve analyses identified the Brief Visuospatial Memory Test-Revised (BVMT-R) Total (.82 ± .05, p < .001), the BVMT-R Delayed Recall (.73 ± .06, p = .001), and the Reading subtest from the Wide-Range Achievement Test-III (.72 ± .06, p = .002) as the top three measures that best discriminated the groups. These findings suggest that early memory test performance might serve a more clinically pivotal role in forecasting future cognitive course than is currently presumed. (JINS, 2014, 20, 1-12).
    Journal of the International Neuropsychological Society 03/2014; · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caloric restriction (CR) without malnutrition increases longevity and delays the onset of age-associated disorders in short-lived species, from unicellular organisms to laboratory mice and rats. The value of CR as a tool to understand human ageing relies on translatability of CR's effects in primates. Here we show that CR significantly improves age-related and all-cause survival in monkeys on a long-term ~30% restricted diet since young adulthood. These data contrast with observations in the 2012 NIA intramural study report, where a difference in survival was not detected between control-fed and CR monkeys. A comparison of body weight of control animals from both studies with each other, and against data collected in a multi-centred relational database of primate ageing, suggests that the NIA control monkeys were effectively undergoing CR. Our data indicate that the benefits of CR on ageing are conserved in primates.
    Nature Communications 02/2014; 5:3557. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: It is difficult to reliably detect the earliest signs of Alzheimer's disease (AD)-associated cognitive impairment. Our aim was to compare 3 psychometric methods of identifying amnestic mild cognitive impairment (aMCI) in a middle-aged longitudinal cohort enriched for AD risk. Methods: Wisconsin Registry for Alzheimer's Prevention (WRAP) participants with 3 waves of cognitive assessment over approximately 6 years were coded as meeting each of 3 psychometric aMCI definitions: (a) 'aMCI standard-baseline' used published norms to establish cutoffs for baseline performance; (b) 'aMCI robust-baseline' applied WRAP-specific robust norms to baseline, and (c) 'aMCI robust-multiwave' applied these robust norms across 3 waves of assessment. Each group was compared to a cognitively healthy subset. Results: Half the aMCI standard-baseline and one third of the aMCI robust-baseline group reverted to normal ranges at follow-up. Only the aMCI robust-multiwave method had an aMCI × age interaction showing significantly worse age-related memory declines in the aMCI group compared to the cognitively healthy group over 6 years of follow-up. Conclusion: Both cross-sectional methods showed instability over time, with many reverting to normal performance after baseline. The multiwave approach identified a group who showed progressive memory declines over 3 visits. Being able to detect progressive decline in late middle age is a critical step in improving prevention efforts. © 2014 S. Karger AG, Basel.
    Dementia and Geriatric Cognitive Disorders 02/2014; 38(1-2):16-30. · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 02/2014; · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matrices (SPD), rotations and probability distributions, all belong to certain curved Riemannian manifolds where vector-space operations are in general not applicable. Analyzing the space of such data via the classical versions of inference models is rather sub-optimal. But perhaps more importantly, since the algorithms do not respect the underlying geometry of the data space, it is hard to provide statistical guarantees (if any) on the results. Using the space of SPD matrices as a concrete example, this paper gives a principled generalization of the well known CCA to the Riemannian setting. Our CCA algorithm operates on the product Riemannian manifold representing SPD matrix-valued fields to identify meaningful statistical relationships on the product Riemannian manifold. As a proof of principle, we present results on an Alzheimer's disease (AD) study where the analysis task involves identifying correlations across diffusion tensor images (DTI) and Cauchy deformation tensor fields derived from T1-weighted magnetic resonance (MR) images.
    01/2014; 8690:251-267.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ-) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ- in all three ROIs and in Aβi compared to Aβ- in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses showing that cognitive function in these participants is not associated with any of the four DTI metrics, the present results suggest an early relationship between PiB and DTI, which may be a meaningful indicator of the initiating or compensatory mechanisms of AD prior to cognitive decline.
    NeuroImage: Clinical. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer's disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer's Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer's Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation.
    NeuroImage 01/2014; 93:107–123. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and APOE4 genotype.
    NeuroImage. Clinical. 01/2014; 4:730-42.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Insulin resistance (IR) increases Alzheimer's disease (AD) risk. IR is related to greater amyloid burden post-mortem and increased deposition within areas affected by early AD. No studies have examined if IR is associated with an in vivo index of amyloid in the human brain in late middle-aged participants at risk for AD. Methods Asymptomatic, late middle-aged adults (N = 186) from the Wisconsin Registry for Alzheimer's Prevention underwent [C-11]Pittsburgh compound B (PiB) positron emission tomography. The cross-sectional design tested the interaction between insulin resistance and glycemic status on PiB distribution volume ratio in three regions of interest (frontal, parietal, and temporal). Results In participants with normoglycemia but not hyperglycemia, higher insulin resistance corresponded to higher PiB uptake in frontal and temporal areas, reflecting increased amyloid deposition. Conclusions This is the first human study to demonstrate that insulin resistance may contribute to amyloid deposition in brain regions affected by AD.
    Alzheimer's & Dementia. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the relationship between amyloid burden and neural function in healthy adults at risk for Alzheimer's Disease (AD), we used multimodal imaging with [C-11]Pittsburgh compound B positron emission tomography, [F-18]fluorodeoxyglucose, positron emission tomography , and magnetic resonance imaging, together with cognitive measurement in 201 subjects (mean age, 60.1 years; range, 46-73 years) from the Wisconsin Registry for Alzheimer's Prevention. Using a qualitative rating, 18% of the samples were strongly positive Beta-amyloid (Aβ+), 41% indeterminate (Aβi), and 41% negative (Aβ-). Aβ+ was associated with older age, female sex, and showed trends for maternal family history of AD and APOE4. Relative to the Aβ- group, Aβ+ and Aβi participants had increased glucose metabolism in the bilateral thalamus; Aβ+ participants also had increased metabolism in the bilateral superior temporal gyrus. Aβ+ participants exhibited increased gray matter in the lateral parietal lobe bilaterally relative to the Aβ- group, and no areas of significant atrophy. Cognitive performance and self report cognitive and affective symptoms did not differ between groups. Amyloid burden can be identified in adults at a mean age of 60 years and is accompanied by glucometabolic increases in specific areas, but not atrophy or cognitive loss. This asymptomatic stage may be an opportune window for intervention to prevent progression to symptomatic AD.
    Neurobiology of aging 10/2013; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: White matter hyperintensities (WMH) of presumed vascular origin, as seen on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging, are known to increase with age and are elevated in Alzheimer's disease (AD). The cognitive implications of these common markers are not well understood. Previous research has primarily focused on global measures of WMH burden and broad localizations that contain multiple white matter tracts. The aims of this study were to determine the pattern of WMH accumulation with age, risk for AD, and the relationship with cognitive function utilizing a voxel-wise analysis capable of identifying specific white matter regions. A total of 349 participants underwent T1-weighted and high-resolution T2-weighted fluid attenuated inversion recovery magnetic resonance imaging and neuropsychological testing. Increasing age and lower cognitive speed and flexibility (a component of executive function), were both significantly associated with regional WMH throughout the brain. When age was controlled, lower cognitive speed and flexibility was independently associated with WMH in the superior corona radiata. Apolipoprotein E ε4 and parental family history of AD were not associated with higher burden of WMH. The results contribute to a larger body of literature suggesting that white matter measures are linked with processing speed, and illustrate the utility of voxel-wise analysis in understanding the effect of lesion location on cognitive function.
    Neurobiology of aging 10/2013; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Although age-related brain changes are becoming better understood, midlife patterns of change are still in need of characterization, and longitudinal studies are lacking. The aim of this study was to determine if baseline fractional anisotropy (FA), obtained from diffusion tensor imaging (DTI) predicts volume change over a 4-year interval. Experimental design: Forty-four cognitively healthy middle-age adults underwent baseline DTI and longitudinal T1-weighted magnetic resonance imaging. Tensor-based morphometry methods were used to evaluate volume change over time. FA values were extracted from regions of interest that included the cingulum, entorhinal white matter, and the genu and splenium of the corpus callosum. Baseline FA was used as a predictor variable, whereas gray and white matter atrophy rates as indexed by Tensor-based morphometry were the dependent variables. Principal observations: Over a 4-year period, participants showed significant contraction of white matter, especially in frontal, temporal, and cerebellar regions (P < 0.05, corrected for multiple comparisons). Baseline FA in entorhinal white matter, genu, and splenium was associated with longitudinal rates of atrophy in regions that included the superior longitudinal fasciculus, anterior corona radiata, temporal stem, and white matter of the inferior temporal gyrus (P < 0.001, uncorrected for multiple comparisons). Conclusions: Brain change with aging is characterized by extensive shrinkage of white matter. Baseline white matter microstructure as indexed by DTI was associated with some of the observed regional volume loss. The findings suggest that both white matter volume loss and microstructural alterations should be considered more prominently in models of aging and neurodegenerative diseases. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 07/2013; · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While moderate calorie restriction (CR) in the absence of malnutrition has been consistently shown to have a systemic, beneficial effect against aging in several animals models, its effect on the brain microstructure in a non-human primate model remains to be studied using post-mortem histopathologic techniques. In the present study, we investigated differences in expression levels of glial fibrillary acid protein (GFAP) and β-amyloid plaque load in the hippocampus and the adjacent cortical areas of 7 Control (ad libitum)-fed and 6 CR male rhesus macaques using immunostaining methods. CR monkeys expressed significantly lower levels (~30% on average) of GFAP than Controls in the CA region of the hippocampus and entorhinal cortex, suggesting a protective effect of CR in limiting astrogliosis. These results recapitulate the neuroprotective effects of CR seen in shorter-lived animal models. There was a significant positive association between age and average amyloid plaque pathology in these animals, but there was no significant difference in amyloid plaque distribution between the two groups. Two of the seven Control animals (28.6%) and one of the six CR animal (16.7%) did not express any amyloid plaques, five of seven Controls (71.4%) and four of six CR animals (66.7%) expressed minimal to moderate amyloid pathology, and one of six CR animals (16.7%) expressed severe amyloid pathology. That CR affects levels of GFAP expression but not amyloid plaque load provides some insight into the means by which CR is beneficial at the microstructural level, potentially by offsetting the increased load of oxidatively damaged proteins, in this non-human primate model of aging. The present study is a preliminary post-mortem histological analysis of the effects of CR on brain health, and further studies using molecular and biochemical techniques are warranted to elucidate underlying mechanisms.
    Brain research 03/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given α-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we show that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub-sampled - on the order of 0.5% - matrix completion methods. Based on this observation, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α-threshold is also recovered faithfully, and is stable.
    Advances in neural information processing systems 01/2013; 2013:890-898.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral blood flow (CBF) provides an indication of the metabolic status of the cortex and may have utility in elucidating preclinical brain changes in persons at risk for Alzheimer's disease (AD) and related diseases. In this study, we investigated CBF in 327 well-characterized adults including patients with AD (n = 28), patients with amnestic mild cognitive impairment (aMCI, n = 23), older cognitively normal (OCN, n = 24) adults, and asymptomatic middle-aged adults (n = 252) with and without a family history (FH) of AD. Compared with the asymptomatic cohort, AD patients displayed significant hypoperfusion in the precuneus, posterior cingulate, lateral parietal cortex, and the hippocampal region. Patients with aMCI exhibited a similar but less marked pattern of hypoperfusion. Perfusion deficits within the OCN adults were primarily localized to the inferior parietal lobules. Asymptomatic participants with a maternal FH of AD showed hypoperfusion in hippocampal and parietofrontal regions compared with those without a FH of AD or those with only a paternal FH of AD. These observations persisted when gray matter volume was included as a voxel-wise covariate. Our findings suggest that having a mother with AD might confer a particular risk for AD-related cerebral hypoperfusion in midlife. In addition, they provide further support for the potential utility of arterial spin labeling for the measurement of AD-related neurometabolic dysfunction, particularly in situations where [18F]fluorodeoxyglucose imaging is infeasible or clinically contraindicated.
    Cerebral Cortex 12/2012; · 8.31 Impact Factor

Publication Stats

3k Citations
506.85 Total Impact Points

Institutions

  • 2004–2014
    • University of Wisconsin–Madison
      • • Department of Psychology
      • • Department of Computer Sciences
      • • Geriatric Research Education and Clinical Center
      • • Department of Medicine
      Madison, Wisconsin, United States
  • 2012
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2009
    • St. Mary's Hospital (WI, USA)
      Madison, Wisconsin, United States
  • 2007
    • University of Toronto
      Toronto, Ontario, Canada
    • Case Western Reserve University
      • Institute of Pathology
      Cleveland, OH, United States
  • 2003
    • St. Joseph Medical Center
      Houston, Texas, United States
  • 2002
    • Barrow Neurological Institute
      Phoenix, Arizona, United States