G Borsani

Università degli Studi di Brescia, Brescia, Lombardy, Italy

Are you G Borsani?

Claim your profile

Publications (82)617.06 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lysosomal hydrolase galactocerebrosidase (GALC) catalyzes the removal of galactose from galactosylceramide and from other sphingolipids. GALC deficiency is responsible for globoid cell leukodystrophy (GLD), or Krabbe's disease, an early lethal inherited neurodegenerative disorder characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system (CNS). The poor outcome of current clinical treatments calls for novel model systems to investigate the biological impact of GALC down-regulation and for the search of novel therapeutic strategies in GLD. Zebrafish (Danio rerio) represents an attractive vertebrate model for human diseases. Here, lysosomal GALC activity was demonstrated in the brain of zebrafish adults and embryos. Accordingly, we identified two GALC co-orthologs (named galca and galcb) dynamically co-expressed in CNS during zebrafish development. Both genes encode for lysosomal enzymes endowed with GALC activity. Single down-regulation of galca or galcb by specific antisense morpholino oligonucleotides results in a partial decrease of GALC activity in zebrafish embryos that was abrogated in double galca/galcb morphants. However, no psychosine accumulation was observed in galca/galcb double morphants. Nevertheless, double galca/galcb knockdown caused reduction and partial disorganization of the expression of the early neuronal marker neuroD and an increase of apoptotic events during CNS development. These observations provide new insights into the pathogenesis of GLD, indicating that GALC loss-of-function may have pathological consequences in developing CNS independent of psychosine accumulation. Also, they underscore the potentiality of the zebrafish system in studying the pathogenesis of lysosomal neurodegenerative diseases, including GLD.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The NEU1 gene is the first identified member of the human sialidases, glycohydrolitic enzymes that remove the terminal sialic acid from oligosaccharide chains. Mutations in NEU1 gene are causative of sialidosis (MIM 256550), a severe lysosomal storage disorder showing autosomal recessive mode of inheritance. Sialidosis has been classified into two subtypes: sialidosis type I, a normomorphic, late-onset form, and sialidosis type II, a more severe neonatal or early-onset form. A total of 50 causative mutations are reported in HGMD database, most of which are missense variants. To further characterize the NEU1 gene and identify new functionally relevant protein isoforms, we decided to study its genetic variability in the human population using the data generated by two large sequencing projects: the 1000 Genomes Project (1000G) and the NHLBI GO Exome Sequencing Project (ESP). Together these two datasets comprise a cohort of 7595 sequenced individuals, making it possible to identify rare variants and dissect population specific ones. By integrating this approach with biochemical and cellular studies, we were able to identify new rare missense and frameshift alleles in NEU1 gene. Among the 9 candidate variants tested, only two resulted in significantly lower levels of sialidase activity (p<0.05), namely c.650T>C and c.700G>A. These two mutations give rise to the amino acid substitutions p.V217A and p.D234N, respectively. NEU1 variants including either of these two amino acid changes have 44% and 25% residual sialidase activity when compared to the wild-type enzyme, reduced protein levels and altered subcellular localization. Thus they may represent new, putative pathological mutations resulting in sialidosis type I. The in silico approach used in this study has enabled the identification of previously unknown NEU1 functional alleles that are widespread in the population and could be tested in future functional studies.
    PLoS ONE 01/2014; 9(8):e104229. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease is an inherited disorder caused by expanded stretch of consecutive trinucleotides (cytosine-adenosine-guanine, CAG) within the first exon of the huntingtin (HTT) gene on chromosome 4 (p16.3). The mutated huntingtin (mHTT) gains toxic function, probably through mechanisms that involve aberrant interactions in several pathways, causing cytotoxicity. Pathophysiology of disease involves several tissues; indeed it has been shown that there is a broad toxic effect of mHTT in the peripheral tissue of patients with HD, not only in the central nervous system. In this study we compared gene expression profiles (GEP) of HD fibroblasts and matched controls using microarray technology. We used RT-PCR to test the consistency of the microarray data and we found four genes up-regulated in HD patients with respect to control individuals. The genes appear to be involved in different pathways that have been shown to be perturbed even in HD models and patients. Although our study is preliminary and has to be extended to a larger cohort of HD patients and controls, nevertheless it shows that gene expression profiles seem to be altered in the fibroblasts of HD patients. Validation of the differential expressions at the protein level is required to ascertain if this cell type can be considered a suitable model for the identification of HD biomarkers.
    Journal of the neurological sciences 11/2013; · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The family of AP-1 complexes mediates protein sorting in the late secretory pathway and it is essential for the development of mammals. The ubiquitously expressed AP-1A complex consists of four adaptins γ1, β1, μ1A and σ1A. AP-1A mediates protein transport between the trans-Golgi network and early endosomes The polarized epithelia AP-1B complex contains the μ1B-adaptin. AP-1B mediates specific transport of proteins from basolateral recycling endosomes to the basolateral plasma membrane of polarized epithelial cells. Results: Analysis of the zebrafish genome revealed the existence of three 1-adaptin genes, encoding 1A, 1B and the novel isoform μ1C, which is not found in mammals. μ1C shows 80% sequence identity with 1A and 1B. The 1C expression pattern largely overlaps with that of 1A, while 1B is expressed in epithelial cells. By knocking-down the synthesis of 1A, 1B and 1C with antisense morpholino techniques we demonstrate that each of these 1 adaptins is essential for zebrafish development, with 1A and 1C being involved in central nervous system development and 1B in kidney formation. Conclusions: Zebrafish is unique in expressing three AP-1 complexes: AP-1A, AP-1B and AP-1C. Our results demonstrate that they are not redundant and that each of them has specific functions, which can not be fulfilled by one of the other isoforms. Each of the 1 adaptins appears to mediate specific molecular mechanisms essential for early developmental processes, which depend on specific intracellular vesicular protein sorting pathways. Developmental Dynamics, 2013. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 10/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tensin3 is an intracellular cytoskeleton-regulating protein, the loss of which is associated with increased cell motility, as has been observed in some human cancers. A novel chromosomal translocation, t(2;7)(p13;p12), present in a patient with a complex syndromic phenotype, directly involves Tensin3 (TNS3) and EXOC6B genes. This translocation could impair the expression of Tensin3 and ExoC6B proteins, and potentially produce two novel fusion transcripts. In the present study, we have investigated the expression and phenotypic features of these potential products in cultured cells from the proband. Skin fibroblasts isolated from the proband as well as an age-matched control were grown in cell culture. Cells were used for quantitative RT-PCR, western blot and immunofluorescent confocal microscopy, which determined Tensin3 gene and protein expression. Phase-contrast and confocal microscopy additionally revealed cellular phenotype differences. A scratch wound assay monitored by live cell imaging measured cellular migration rates. The levels of Tensin3 at both mRNA and protein levels were lower in proband cells versus control fibroblasts. Proband cells displayed broader and shorter morphologies versus control fibroblasts, and immunofluorescent staining revealed additional Tensin3 expression along cytoskeletal filaments and the cell periphery only in control fibroblasts. In addition, proband fibroblasts showed a significantly higher migration rate than control cells over 24 h. The phenotypic changes observed in proband cells may arise from TNS3 haploinsufficiency, causing partial loss of full-length Tensin3 protein. These results further expose a role for Tensin3 in cytoskeletal organisation and cell motility and may also help to explain the syndromic features observed in the patient.
    BMC Medical Genetics 06/2013; 14(1):65. · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological plausibility and other prior information could help select genome-wide association (GWA) findings for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts' opinions and empirical evidence to estimate the relative importance of 15 types of information at the single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.
    Genetic Epidemiology 02/2013; 37(2):205-13. · 4.02 Impact Factor
  • Source
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene coding for mucolipin-1 (TRPML1). TRPML1 belongs to a transient receptor potential channels (TRP) subfamily, which in mammals includes two other members: mucolipin-2 (TRPML2) and mucolipin-3 (TRPML3). Bioinformatic analysis of the Danio rerio (zebrafish) genome and trascriptome revealed the presence of five different genes related to human mucolipins: mcoln1.1, mcoln1.2, mcoln2, mcoln3.1 and mcoln3.2. We focused our efforts on the characterization of the two putative zebrafish MCOLN1 co-orthologs. Transient-expression experiments in human HeLa cells demonstrated that fish Mcoln1.1 and Mcoln1.2, similarly to TRPML1, localize to late endosomal/lysosomal compartments. Real-Time PCR (RT-PCR) experiments showed that both genes are maternally expressed and transcribed at different levels during embryogenesis. RT-PCR analysis in different zebrafish tissues displayed ubiquitary expression for mcoln1.1 and a more tissue-specific pattern for mcoln1.2. Spatial and temporal expression studies using whole-mount in situ hybridization confirmed that both genes are maternally expressed and ubiquitously transcribed during gastrulation and early somitogenesis. Notably, in the next developmental stages they are more expressed in neural regions and in retina layers, tissues affected in MLIV. Interestingly, mcoln1.1 is detected, from 10 somite-stage until to 36 hpf, in the yolk syncytial layer (YSL) and in the intermediate cell mass (ICM), the earliest site of hematopoiesis. Overall, the redundancy of mucolipins together with their expression profile support the biological relevance of this class of proteins in zebrafish. The data herein presented indicate that Danio rerio could be a suitable vertebrate model for the study of some aspects of MLIV pathogenesis.
    The International journal of developmental biology 01/2013; 57(1):85-93. · 2.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prioritization is the process whereby a set of possible candidate genes or SNPs is ranked so that the most promising can be taken forward into further studies. In a genome-wide association study, prioritization is usually based on the P-values alone, but researchers sometimes take account of external annotation information about the SNPs such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate Bayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome-wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers' subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P-value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta-analysis of kidney function genome-wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P-values alone.
    Genetic Epidemiology 12/2012; · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sialidases are glycohydrolases present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3-4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis (MIM #256550), a Mendelian disease characterized by lysosomal storage disorder and neurodegeneration. Today more than 50 sialic acid variants are known and the gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. Using an in silico approach, we have reconstructed the evolution of the sialidase family in metazoan and identified and characterized sialidase orthologs from 21 different organisms. We also identified a new form of the enzyme, named NEU5, representing an intermediate step in the evolution leading to the modern NEU2-4 proteins. Our study provides new insights into the mechanisms that shaped the substrate specificity and other peculiar properties of mammalian sialidases. Moreover, we decided to analyze the genetic variability of the four sialidases NEU1-4 within the human population, to identify variants that could play a role in modulating the enzymes activity and/or other cellular properties. This is of particular interest in the case of NEU1, since an impaired activity of this enzyme is causative of sialidosis and galactosialidosis. We used the large datasets available from 1000 Genome Project and NHLBI Exome Sequencing Project, which combines for a total of about 7500 individual exomes, to analyze sequence variants (SNVs) present in the four sialidase genes. We annotate these variants respect to their possible functional role and then focused on rare missense and loss-of-function variants present in NEU1 as possible causative mutations for sialidosis. This approach exploits the wealth of data generated by NGS projects for the discovery of new rare alleles associated with known mendelian diseases, and can be useful to facilitate the identification of the causative mutations in patients without a molecular diagnosis.
    Conferenza Società Italiana Genetica Umana 2012, Sorrento, Italy; 11/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in the evolution of specific properties of sialidases.
    PLoS ONE 01/2012; 7(8):e44193. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.
    PLoS ONE 01/2012; 7(10):e46642. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large surface loops contained within compact protein structures and not involved in catalytic process have been proposed as preferred regions for protein family evolution. These loops are subjected to lower sequence constraints and can evolve rapidly in novel structural variants. A good model to study this hypothesis is represented by sialidase enzymes. Indeed, the structure of sialidases is a β-propeller composed by anti-parallel β-sheets connected by loops that suit well with the rapid evolving loop hypothesis. These features prompted us to extend our studies on this protein family in birds, to get insights on the evolution of this class of glycohydrolases. Gallus gallus (Gg) genome contains one NEU3 gene encoding a protein with a unique 188 amino acid sequence mainly constituted by a peptide motif repeated six times in tandem with no homology with any other known protein sequence. The repeat region is located at the same position as the roughly 80 amino acid loop characteristic of mammalian NEU4. Based on molecular modeling, all these sequences represent a connecting loop between the first two highly conserved β-strands of the fifth blade of the sialidase β-propeller. Moreover this loop is highly variable in sequence and size in NEU3 sialidases from other vertebrates. Finally, we found that the general enzymatic properties and subcellular localization of Gg NEU3 are not influenced by the deletion of the repeat sequence. In this study we demonstrated that sialidase protein structure contains a surface loop, highly variable both in sequence and size, connecting two conserved β-sheets and emerging on the opposite site of the catalytic crevice. These data confirm that sialidase family can serve as suitable model for the study of the evolutionary process based on rapid evolving loops, which may had occurred in sialidases. Giving the peculiar organization of the loop region identified in Gg NEU3, this protein can be considered of particular interest in such evolutionary studies and to get deeper insights in sialidase evolution.
    BMC Biochemistry 08/2011; 12:45. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Senataxin is encoded by the SETX gene and is mainly involved in two different neurodegenerative diseases, the dominant juvenile form of amyotrophic lateral sclerosis type 4 and a recessive form of ataxia with oculomotor apraxia type 2. Based on protein homology, senataxin is predicted to be a putative DNA/RNA helicase, while senataxin interactors from patients' lymphoblast cell lines suggest a possible involvement of the protein in different aspects of RNA metabolism. Except for an increased sensitivity to oxidative DNA damaging agents shown by some ataxia with neuropathy patients' cell lines, no data are available about possible functional consequences of dominant SETX mutations and no studies address the function of senataxin in neurons. To start elucidating the physiological role of senataxin in neurons and how disease-causing mutations in this protein lead to neurodegeneration, we analysed the effect of senataxin on neuronal differentiation in primary hippocampal neurons and retinoic acid-treated P19 cells by modulating the expression levels of wild-type senataxin and three different dominant mutant forms of the protein. Wild-type senataxin overexpression was required and sufficient to trigger neuritogenesis and protect cells from apoptosis during differentiation. These actions were reversed by silencing of senataxin. In contrast, overexpression of the dominant mutant forms did not affect the regular differentiation process in primary hippocampal neurons. Analysis of the cellular pathways leading to neuritogenesis and cytoprotection revealed a role of senataxin in modulating the expression levels and signalling activity of fibroblast growth factor 8. Silencing of senataxin reduced, while overexpression enhanced, fibroblast growth factor 8 expression levels and the phosphorylation of related target kinases and effector proteins. The effects of senataxin overexpression were prevented when fibroblast growth factor 8 signalling was inhibited, while exogenous fibroblast growth factor 8 reversed the effects of senataxin silencing. Overall, these results reveal a key role of senataxin in neuronal differentiation through the fibroblast growth factor 8 signalling and provide initial molecular bases to explain the neurodegeneration associated with loss-of-function mutations in senataxin found in recessive ataxia. The lack of effect on neuritogenesis observed with the overexpression of the dominant mutant forms of senataxin apparently excludes a dominant negative effect of these mutants while favouring haploinsufficiency as the pathogenic mechanism implicated in the amyotrophic lateral sclerosis 4-related degenerative condition. Alternatively, a different protein function, other than the one involved in neuritogenesis, may be implicated in these dominant degenerative processes.
    Brain 06/2011; 134(Pt 6):1808-28. · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SLC2A10 gene located on chromosome 20q13.1 encodes the facilitative glucose transporter 10 (GLUT10), a class III member of the SLC2A facilitative glucose transporter family. Mutations in the human SLC2A10 gene cause arterial tortuosity syndrome (ATS), a rare autosomal recessive connective tissue disorder. In this work, we report the characterization of the slc2a10 ortholog gene in zebrafish (Danio rerio) and its expression pattern during embryonic development and in adult tissues. The slc2a10 gene consists of 5 exons, spanning 8 kb and mapping to a region on chromosome 11 that exhibits conserved synteny with human chromosome 20. The gene encodes Glut10, a 513 amino acid protein that maintains the 12 transmembrane domain structure typical of the GLUTs family, and shares the specific functional motifs involved in sugar transport with the vertebrate GLUT10. RT-PCR analysis showed that two specific splice variants, both including the 5’-UTR region, were expressed during embryogenesis and in different adult zebrafish tissues and organs. In situ hybridization analyses demonstrated a maternal origin of the total slc2a10 mRNA and its ubiquitous distribution until the early somitogenesis stage. In later embryonic stages, slc2a10 mRNA was detected in the otic vesicles, hatching gland cells, pectoral fin, posterior tectum and swim bladder. Overall, these results suggest a wide role of slc2a10 during zebrafish development.
    The International journal of developmental biology 03/2011; 55(2):229-36. · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein transport between the trans-Golgi network and endosomes is mediated by transport vesicles formed by the adaptor-protein complex AP-1, consisting of the adaptins γ1, β1, μ1, σ1. Mammalia express μ1A ubiquitously and isoform μ1B in polarized epithelia. Mouse γ1 or μ1A 'knock out's revealed that AP-1 is indispensable for embryonic development. We isolated μ1A and μ1B from Danio rerio. Analysis of μ1A and μ1B expression revealed tissue-specific expression for either one during embryogenesis and in adult tissues in contrast to their expression in mammalia. μ1B transcript was detected in organs of endodermal derivation and "knock-down" experiments gave rise to embryos defective in formation of intestine, liver, and pronephric ducts. Development ceased at 7-8 dpf. μ1B is not expressed in murine liver, indicating loss of μ1B expression and establishment of alternative sorting mechanisms during mammalian development.
    Developmental Dynamics 09/2010; 239(9):2404-12. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes the recent research development on vertebrate sialidase biology. Sialic acid-containing compounds play important roles in many physiological processes, including cell proliferation, apoptosis and differentiation, control of cell adhesion, immune surveillance, and clearance of plasma proteins. In this context, sialidases, the glycohydrolases that remove the terminal sialic acid at the non-reducing end of various glycoconjugates, perform an equally pivotal function. Sialidases in higher organisms are differentially expressed in cells and tissues/organs, with particular subcellular distribution and substrate specificity: they are the lysosomal (NEU1), the cytosolic (NEU2), and plasma membrane- and intracellular-associated sialidases (NEU3 and NEU4). The molecular cloning of several mammalian sialidases since 1993 has boosted research in this field. Here we summarize the results obtained since 2002, when the last general review on the molecular biology of mammalian sialidases was written. In those few years many original papers dealing with different aspects of sialidase biology have been published, highlighting the increasing relevance of these enzymes in glycobiology. Attention has also been paid to the trans-sialidases, which transfer sialic acid residues from a donor sialoconjugate to an acceptor asialo substrate. These enzymes are abundantly distributed in trypanosomes and employed to express pathogenicity, also in humans. There are structural similarities and strategic differences at the level of the active site between the mammalian sialidases and trans-sialidases. A better knowledge of these properties may permit the design of better anti-pathogen drugs.
    Advances in Carbohydrate Chemistry and Biochemistry 01/2010; 64:403-79. · 7.13 Impact Factor
  • Advances in Carbohydrate Chemistry and Biochemistry - ADVAN CARBOHYD CHEM BIOCHEM. 01/2010; 64:403-479.
  • Source
    Andrea Bozzato, Sergio Barlati, Giuseppe Borsani
    [Show abstract] [Hide abstract]
    ABSTRACT: Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.
    Biochimica et Biophysica Acta 05/2008; 1782(4):250-8. · 4.66 Impact Factor

Publication Stats

3k Citations
617.06 Total Impact Points

Institutions

  • 2000–2014
    • Università degli Studi di Brescia
      • • Department of Molecular and Translational Medicine
      • • Department of Clinical and Experimental Sciences
      Brescia, Lombardy, Italy
  • 2008
    • University of Padova
      Padua, Veneto, Italy
  • 2001
    • University of Barcelona
      • Departament de Bioquímica i Biologia Molecular (Biologia)
      Barcelona, Catalonia, Spain
  • 1996–2001
    • Telethon Institute of Genetics and Medicine
      Napoli, Campania, Italy
  • 1998–2000
    • University of Naples Federico II
      • Section of Pharmacology
      Napoli, Campania, Italy
    • Università Vita-Salute San Raffaele
      Milano, Lombardy, Italy
  • 1991–1998
    • Baylor College of Medicine
      • Department of Molecular & Human Genetics
      Houston, TX, United States