Giuliano Bandoli

National Research Council, Roma, Latium, Italy

Are you Giuliano Bandoli?

Claim your profile

Publications (267)579.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study presents the first application of a general procedure based on the use of the [Tc(N)Cl(PS)(PPh(3))] species (PS is an alkyl phosphinothiolate ligand) for the preparation of Tc(N) target-specific compounds. [Tc(N)Cl(PS)(PPh(3))] selectively reacts with an appropriate dithiocarbamate ligand (S(∧)Y) to give [Tc(N)(PS)(S(∧)Y)] compounds. 1-(2-Methoxyphenyl)piperazine, which displays a potent and specific affinity for 5HT(1A) receptors, was selected as a functional group and conjugated to the dithiocarbamate unit through different spacers (L( n )). [(99m)Tc(N)(PS)(L( n ))] complexes were prepared in high yield (more than 90%). The chemical identity of (99m)Tc complexes was determined by high performance liquid chromatography comparison with the corresponding (99g)Tc complexes. All complexes were found to be inert toward transchelation with an excess of glutathione and cysteine. No notable biotransformation of the native compound into different species by the in vitro action of the serum and liver enzymes was shown. Nanomolar affinity for the 5HT(1A) receptor was obtained for [(99m)Tc(N)(PSiso)L(3)] (IC(50) = 1.5 nM); a reduction of the affinity was observed for the other complexes as a function of the shortening of the alkyl chain interposed between the dithiocarbamate and the pharmacophore. Negligible brain uptake was found from in vivo distribution data of [(99m)Tc(N)(PSiso)L(3)]. The key finding of this study is that the complexes maintained good affinity and selectivity for 5HT(1A) receptors, and the IC(50) value for [(99g)Tc(N)(PSiso)L(3)] being comparable to the IC(50) value found for WAY 100635. This result confirmed the possibility of preparing [(99m)Tc(N)(PS)]-based target-specific compounds without affecting the affinity and selectivity of the bioactive molecules for the corresponding receptors.
    European Journal of Biochemistry 10/2010; 16(1):137-55. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (99m)Tc(N)-DBODC5 is a cationic mixed compound under clinical investigation as potential myocardial imaging agent. In spite of this, analogously to the other cationic (99m)Tc-agents, presents a relatively low first-pass extraction. Thus, modification of (99m)Tc(N)-DBODC(5) direct to increase its first-pass extraction keeping unaltered the favorable imaging properties would be desirable. This work describes the synthesis and biological evaluation of a series of novel cationic (99m)Tc-nitrido complexes, of general formula [(99m)TcN(DTC-Ln)(PNP)](+) (DTC-Ln= alicyclic dithiocarbamates; PNP = diphosphinoamine), as potential radiotracers for myocardial perfusion imaging. The synthesis of cationic (99m)Tc-(N)-complexes were accomplished in two steps. Biodistribution studies were performed in rats and compared with the distribution profiles of (99m)Tc(N)-DBODC5 and (99m)Tc-Sestamibi. The metabolisms of the most promising compounds were evaluated by HPLC methods. Biological studies revealed that most of the complexes have a high initial and persistent heart uptake with rapid clearance from nontarget tissues. Among tested compounds, 2 and 12 showed improved heart uptake with respect to the gold standard (99m)Tc-complexes with favorable heart-to-liver and slightly lower heart-to-lung ratios. Chromatographic profiles of (99m)Tc(N)-radioactivity extracted from tissues and fluids were coincident with the native compound evidencing remarkable in vivo stability of these agents. This study shows that the incorporation of alicyclic dithiocarbamate in the [(99m)Tc(N)(PNP)](+) building block yields to a significant increase of the heart uptake at early injection point suggesting that the first-pass extraction fraction of these novel complexes may be increased with respect to the other cationic (99m)Tc-agents keeping almost unaltered the favorable target/nontarget ratios.
    Bioconjugate Chemistry 05/2010; 21(5):928-39. · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of the uncommon molecular ion fragment [Re(N)(P∩N)] is ESI-MS conditions is confirmed by the synthesis and characterization of the representative [Re(N)Cl2(P∩NMe2)PPh3] complex. This species contains the unprecedented [Re(N)(P∩NMe2)] moiety which constitutes an additional example of metal-based building-block potentially useful in the design of rhenium radiopharmaceuticals.
    Inorganica Chimica Acta 04/2010; 363(6):1289-1291. · 2.04 Impact Factor
  • Nuclear Medicine and Biology - NUCL MED BIOL. 01/2010; 37(6):707-707.
  • Nuclear Medicine and Biology - NUCL MED BIOL. 01/2010; 37(6):700-700.
  • Nuclear Medicine and Biology - NUCL MED BIOL. 01/2010; 37(6):709-709.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The physico-chemical properties of the beta-diketonate diamine Cu(ii) compound with hfa (1,1,1,5,5,5-hexafluoro-2-4-pentanedionate) and TMEDA (N,N,N',N' tetramethylethylenediamine), Cu(hfa)(2).TMEDA, have been thoroughly investigated via an integrated multi-technique experimental-computational approach. In the newly found orthorhombic polymorph, as revealed by low temperature single-crystal X-ray studies, the complex is present as a monomer with a distorted octahedral geometry at the Cu(ii) centre. The compound sublimates, without premature side decompositions, at 343 K and 10(-3) Torr. The structural, vibrational, electronic and thermal behavior of the neutral Cu(hfa)(2).TMEDA complex has been investigated along with its fragmentation pathways, initiated by the release of an anionic hfa ligand with formation of a positive Cu(hfa).TMEDA(+) ion. Joint experimental and theoretical analyses led to the rationalization of the first fragmentation steps in terms of the Cu(ii)-ligands bonding properties and Jahn-Teller distortion. The present study suggests applications of Cu(hfa)(2).TMEDA as a precursor for copper and copper oxide materials by Chemical Vapor Deposition.
    Physical Chemistry Chemical Physics 08/2009; 11(28):5998-6007. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An adduct of Co(II) 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate with N,N,N',N'-tetramethylethylenediamine is synthesized by a simple procedure and, for the first time, thoroughly characterized by several analytical methods in order to elucidate its structure (single-crystal X-ray diffraction), chemical composition (elemental analyses, FT-IR), optical properties (UV-vis absorption spectroscopy), thermal behavior (thermogravimetric analysis and differential scanning calorimetry), and fragmentation pathways (electrospray ionization mass spectrometry and tandem mass spectrometry). The target complex is monomeric with a pseudo-octahedral Co(II) core and presents a clean decomposition pathway and a high volatility at moderate temperatures. Preliminary chemical vapor deposition (CVD) experiments highlight its very promising features as a CVD/atomic layer deposition molecular source for cobalt oxide nanosystems.
    Inorganic Chemistry 01/2009; 48(1):82-9. · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given the commercial availability of 68Ge–68Ga generators, in principle analogous to the worldwide utilized 99Mo–99mTc generator, it is surprising that few 68Ga agents have been developed beyond basic research toward clinical application. The use of the unconventional 68Ga positron emitter would allow for a cost-effective production of 68Ga radiotracers far from a cyclotron facility. Moreover, the use of 67Ga radiopharmaceuticals for imaging studies, and the application of non-radioactive gallium compounds in the treatment of important disorders, including a number of cancer and infectious diseases, make studies on trivalent Ga coordination chemistry attractive for the design of novel gallium-based drugs. The aim of this review is to survey the reported crystal data of six-coordinated Ga(III) complexes in order to gain information to be used in the design of novel Ga complexes of medicinal interest.
    Coordination Chemistry Reviews 01/2009; · 12.10 Impact Factor
  • European journal of nuclear medicine and molecular imaging 01/2009; 36:S220-S220. · 5.22 Impact Factor
  • European journal of nuclear medicine and molecular imaging 01/2009; 36:S220-S220. · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reactivity of bulky alkylphosphino-thiol ligands (PSH) toward nitride-M(V, VI) (M = Tc/Re) precursors was investigated. Neutral five-coordinate monosubstituted complexes of the type [M(N)(PS)Cl(PPh(3))] (Tc1-4, Re1-2) were prepared in moderate to high yields. It was found that these [M(N)(PS)Cl(PPh(3))] species underwent ligand-exchange reactions under mild conditions when reacted with bidentate mononegative ligands having soft donor atoms such as dithiocarbamates (NaL(n)) to afford stable dissymmetrical mixed-substituted complexes of the type [M(N)(PS)(L(n))] (Tc5,8-10, Re5-9) containing two different bidentate chelating ligands bound to the [M[triple bond]N](2+) moiety. In these reactions, the dithiocarbamate replaced the two labile monodentate ligands (Cl and PPh(3)) leaving the [M(N)(PS)](+) building block intact. In the above reactions, technetium and rhenium were found to behave in a similar way. Instead, under more drastic conditions, reactions of PSH with [M(N)Cl(2)(PPh(3))(2)] gave a mixture of monosubstituted [M(N)(PS)Cl(PPh(3))] and bis-substituted species [M(N)(PS)(2)] (Tc11-14) in the case of technetium, whereas only monosubstituted [M(N)(PS)Cl(PPh(3))] complexes were recovered for rhenium. All isolated products were characterized by elemental analysis, IR and multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopies, ESI MS spectrometry, and X-ray crystal structure determination of the representative monosubstituted [Tc(N)(PStbu)Cl(PPh(3))] (Tc4) and mixed-substituted [Re(N)(PScy)(L(3))] (Re7) and [Re(N)(PSiso)(L(4))] (Re9) complexes. The latter rhenium complexes represent the first example of a square-pyramidal nitrido Re species with the basal plane defined by a PS(3) donor set. Monosubstituted [M(N)(PS)Cl(PPh(3))] species bearing the substitution-inert [M(N)(PS)](+) moieties act as suitable building blocks proposed for the construction of new classes of dissymmetrical nitrido compounds with potential application in the development of essential and target specific (99m)Tc and (188)Re radiopharmaceuticals for imaging and therapy, respectively.
    Inorganic Chemistry 12/2008; 47(24):11972-83. · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cited By (since 1996):18, Export Date: 22 April 2013, Source: Scopus, CODEN: ICCOF, :doi 10.1016/j.inoche.2008.06.005, Language of Original Document: English, Correspondence Address: Santini, C.; Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy; email:, References: Wanzlick, H.W., Schoenherr, H.J., (1968) Angew. Chem. Int. Ed. Engl., 7, pp. 141-142;
    Inorganic Chemistry Communications 09/2008; 11(9):1103-1106. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 99mTc(N)-DBODC5 is the lead compound of a new series of monocationic 99mTc(N)-based potential myocardial imaging agents that exhibit original biodistribution properties. This study was addressed to elucidate the mechanisms of distribution, retention, and elimination of this promising 99mTc(N)-agent. The sex-related in vitro and in vivo stability and the subcellular distribution of 99mTc(N)-DBODC5 were investigated. Studies were performed by considering binding to the serum proteins; stability in rat serum, human serum, and rat liver homogenates; and the chemical integrity of the complex after extraction from rat tissues such as heart, liver, and kidney, as well as from intestinal fluids and urine. The effect of cyclosporin A on the in vivo pharmacokinetic properties of 99mTc(N)-DBODC5 was also evaluated. Subcellular distribution of 99mTc(N)-DBODC5 in ex vivo rat heart was determined by standard differential centrifugation techniques. No significant in vitro serum protein binding and no notable biotransformation of the native compound into different species by the in vitro action of the serum and liver enzymes was evidenced. In vivo experiments showed that sex affects the pharmacokinetic profile of the 99mTc(N)-complexes including metabolism and excretion. Chromatographic profiles of 99mTc(N)-radioactivity extracted from tissues and fluids of female rats were always coincident with the control. Conversely, a small percentage of metabolized species was detected by high-performance liquid chromatography in liver extracts of male rats. Furthermore, administration of cyclosporin A caused a significant reduction of lung, liver, and kidney washout along with a considerable variation in activity distribution in the intestinal tract in both male and female rats, thus indicating a possible implication of Pgp transporters in determining the biologic behavior of 99mTc(N)-DBODC5. However, this phenomenon was more pronounced in females. Subcellular distribution studies showed that 86.3% +/- 7.4% of 99mTc(N)-DBODC5 was localized into mitochondrial fraction as a result of the interaction with the negative membrane potential. Evidence showing that the new 99mTc(N)-myocardial tracers behave as multidrug resistance-associated protein P-glycoprotein substrates, combined with their selective mitochondrial accumulation, strongly supports the possibility that diagnostic application of 99mTc(N)-DBODC5 can be extended to tumor imaging and noninvasive multidrug resistance studies.
    Journal of Nuclear Medicine 08/2008; 49(8):1336-44. · 5.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using the avidin-biotin system as model, we investigate here the effective application of [Tc(N)L(PNP)](+/0) technology (L=N-functionalized cysteine [O(-),S(-)]; PNP=aminodiphosphine) to the preparation of target-specific radiopharmaceuticals. A series of (99m)Tc-nitrido complexes containing functionalized biotin ligands was prepared and their biological profile was determined. To minimize the steric and the electronic influences of the Tc-carrying complex on the biotin-avidin receptor interaction, the following N-functionalized cysteine-biotin derivatives were synthesized: (1) Biot-CysOSH; (2) Biot-Abu-CysOSH; (3) Biot-Abz-CysOSH; (4) Biot-l-(Ac)Lys-CysOSH; (5) Biot-d-(Ac)Lys-CysOSH; (6) Biot-Glu-CysOSH. The asymmetrical nitrido-Tc(V) (99g/99m)Tc(N)(Biot-X-CysOS)(PNP3) (X=spacer) complexes, where PNP3 was N,N-bis-[(dimethoxypropyl)phosphinoethyl] methoxy-ethylamine, were obtained by simultaneous addition of PNP3 and the relevant biotinylated ligand to a solution containing a (99m)Tc-nitrido precursor (yields >95%). In all cases, a mixture of syn- and anti isomers was observed. In vitro challenge experiments with glutathione and cysteine indicated that no transchelation reactions occurred. Assessment of the in vitro binding to avidin of the complexes revealed that only the complexes containing Biot-Abu-CysOS and Biot-Glu-CysOS ligand maintained a good affinity for the concentrator. Stability studies carried out in human and mouse plasma as well as in rat and mouse liver homogenate evidenced a rapid enzymatic degradation for the (99m)Tc(N)(Biot-Abu-CysOS)(PNP3) complex, whereas the (99m)Tc(N)(Biot-Glu-CysOS)(PNP3) one was stable in all conditions. Tissue biodistribution in normal Balb/C mice of the most stable candidate showed a rapid clearance both from the blood and the other tissues. The activity was eliminated both through the hepatobiliary system and the urinary tract.
    Nuclear Medicine and Biology 07/2007; 34(5):511-22. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc(II)-dithizone based molecular systems [Zn(HDz)2] are intriguing candidates for the development of optical devices thanks to their interesting photochromic and nonlinear optical properties. In the present work, the behavior of Zn(HDz)2 in different solvents was investigated by a combined theoretical and experimental approach. In particular, solutions of both dithizone (H2Dz) and Zn(HDz)2 were analyzed by optical absorption spectroscopy and nuclear magnetic resonance (NMR) techniques, with particular attention to structure–properties relationships. Density functional and time-dependent density functional calculations were performed on the stable and the activated forms of the complex, obtaining information on the energetics of their interconversion, as well as on the nature of their electronic excitations. Copyright © 2007 John Wiley & Sons, Ltd.
    Applied Organometallic Chemistry 03/2007; 21(4):246 - 254. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reduction of Co(dppf)Cl2 with 2 equiv of sodium naphthalenide in THF, in the presence of dppf, affords the homoleptic complex Co(dppf)2, 1, isolated in 65% yield as a brick red solid, extremely air sensitive. In solution, under inert atmosphere, 1 slowly decomposes into Co and dppf, following a first-order kinetic law (t1/2 = 21 h at 22 degrees C). Similarly to the Rh and Ir congeners, 1 undergoes a one-electron reversible reduction to [Co(dppf)2]-. Attempts to obtain this d10 species by chemical as well as electrochemical reduction of 1 lead to the hydride HCo(dppf)2, 2, as the only product that can be isolated. Reduction of Ni(dppf)Cl2 with sodium in the presence of dppf and catalytic amounts of naphthalene affords Ni(dppf)2, 3, isolated in 60% yield as a yellow air stable solid. The stoichiometric oxidation of 3 with [FeCp2]PF6 forms the d9 complex [Ni(dppf)2]PF6, 4, which represents the second example of a structurally characterized Ni(I) complex stabilized by phosphines. A single-crystal X-ray analysis shows for the metal a distorted tetrahedral environment with a dihedral angle defined by the planes containing the atoms P(1), Ni, P(2) and P(3), Ni, P(4) of 78.2 degrees and remarkably long Ni-P bond distances (2.342(3)-2.394(3) A). The EPR spectroscopic properties of 1 (at 106 K in THF) and 4 (at 7 K in 2-methyl-THF) have been examined and g tensor values measured (1, gx = 2.008, gy = 2.182, gz = 2.326; 4, gx = 2.098, gy = 2.113, gz = 2.332). A linear dependence between the hyperfine constants and the Ni-P bond distances has been evidenced. Finally, the change with time of the EPR spectrum of 4 indicates that it very slowly releases dppf.
    Inorganic Chemistry 01/2007; 45(25):10321-8. · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reaction between palladium(0) complexes bearing potentially terdentate ligands and dimethyl acetylenedicarboxylate (DMA) to give the corresponding palladacyclopentadiene complexes was studied under kinetic conditions. The reactivity of the complexes was markedly influenced by the nature of the ancillary ligand. Thus, when pyridyldithioether (SNS) and dipyridylthioether (NSN) ligands are used, the reactivity and the rate law of the corresponding derivatives are similar to those of the unsubstituted bidentate pyridylthioether substrates and, therefore, a marked rate increase can be obtained only by reduction of the olefin steric requirement. When terdentate NNN ligands are used, an apparent difference in reactivity between the derivatives bearing the pyridine−amine−pyridine and pyridine−amine−quinoline ligands is observed. On the basis of a detailed structural study (NMR, X-ray) and on kinetic investigations, an interpretation which takes into account the flexibility of the cycle formed between the ligand and palladium is proposed. Thus, irrespective of the size of the cycle, the complexes in which the ligand forms flexible cycles undergo ring opening less easily, with a consequent reduction of reactivity. Conversely, rigid rings cannot undergo associative attack without companion ring opening, this phenomenon being crucial in favoring the alkyne attack.
    Organometallics 09/2006; 25(22). · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hydroxo complex cis-[L2Pt(mu-OH)]2(NO3)2, (L = PMePh2, 1a), in CH3CN solution, deprotonates the NH2 group of 9-methyladenine (9-MeAd) to give the cyclic trinuclear species cis-[L2Pt[9-MeAd(-H)]]3(NO3)3, (L = PMePh2, 2a), in which the nucleobase binds the metal centers through the N(1), N(6) atoms. In solution at room temperature, 2a slowly reacts with the solvent to form quantitatively the mononuclear azametallacycle cis-[L2PtNH=C(Me)[9-MeAd(-2H)]]NO3 (L = PMePh2, 3a), containing as anionic ligand the deprotonated form of molecule N-(9-methyl-1,9-dihydro-purin-6-ylidene)-acetamidine. In the same experimental conditions, the hydroxo complex with PPh3 (1b) forms immediately the insertion product 3b. Single-crystal X-ray analyses of 3a and 3b show the coordination of the platinum cation at the N(1) site of the purine moiety and to the N atom of the inserted acetonitrile, whereas the exocyclic amino nitrogen binds the carbon atom of the same CN group. The resulting six-membered ring is slightly distorted from planarity, with carbon-nitrogen bond distances for the inserted nitrile typical of a double bond [C(3)-N(2) = 1.292(7) Angstroms in 3a and 1.279(11) Angstroms in 3b], while the remaining CN bonds of the metallocycle are in the range of 1.335(8)-1.397(10) Angstroms. A detailed multinuclear 1H, 31P, 13C, and 15N NMR study shows that the nitrogen atom of the inserted acetonitrile molecule binds a proton suggesting for 3a,b an imino structure in solution. In DMSO and chlorinated solvents, 3a slowly releases the nitrile reforming the trinuclear species 2a, whereas 3b forms the mononuclear derivative cis-[L2Pt[9-MeAd(-H)]]NO3 (L = PPh3, 4b), in which the adeninate ion chelates the metal center through the N(6) and N(7) atoms. Complex 4b is quantitatively obtained when 1b reacts with 9-MeAd in DMSO and can be easily isolated if the reaction is carried out in CH(2)Cl(2). In CH(3)CN solution, at room temperature, 4b slowly converts into 3b indicating that the insertion of acetonitrile is a reversible process. A similar metal-mediated coupling reaction occurs when 1a,b react with 1-methylcytosine (1-MeCy) in CH(3)CN. The resulting complexes, cis-[L(2)PtNH=C(Me)[1-MeCy(-2H)]]NO3, (L = PMePh2, 5a and PPh3, 5b), contain the deprotonated form of the ligand N-(1-methyl-2-oxo-2,3-dihydro-1H-pyrimidin-4-ylidene)-acetamidine. The X-ray analysis of 5a shows the coordination of the metal at the N(3) site of the pyrimidine cycle and to the nitrogen atom of the acetonitrile, with features of the six-membered metallocycle only slightly different from those found in 3a and 3b. In CD3CN/CH3(13)CN solution complexes 5a,b undergo exchange of the inserted nitrile, while in DMSO or chlorinated solvents they irreversibly release CH3CN to form species not yet fully characterized. No insertion of CH3CN occurs when the hydroxo complexes are stabilized by PMe3 and PMe2Ph.
    Inorganic Chemistry 03/2006; 45(4):1805-14. · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A general procedure is presented for the preparation of a new class of nitrido asymmetrical Tc-99m complexes containing two different bidentate ligands bound to the same [Tc(N)]2+ core that could be used to design either essential or target specific imaging agents. This procedure is based on the chemical properties of a new monosubstituted [Tc(N)(R2PS)Cl(PPh3)] species composed of a TcN multiple bond and an ancillary phosphine thiol ligand (R2PSH). This intermediate readily reacts with bidentate mononegative ligands (S--Y) containing soft pi-donor coordinating atoms to give neutral pentacoordinate asymmetrical complexes of the type [Tc(N)(R2PS)(S--Y)]. The ability of several bidentate ligands containing different combination of heteroatoms (S, N, O) to form complexes with the [Tc(N)(R2PS)]+ building block was investigated. It was found that mononegative dithiocarbamate (DTC) or cysteine carboxyl derivate ligands promptly react with the monosubstituted species to form the final mixed compound in high yield. Preliminary biodistribution data in rats of some representative [Tc(N)(R2PS)(DTC)] compounds revealed an interesting initial brain uptake (in the range 0.20 +/- 0.01% ID/g and 0.91 +/- 0.06% ID/g), indicating their ability to cross in and out of the intact BBB. In these complexes the dithiocarbamate, or more generally the bidentate ligand (S--Y), can be designed to carry a functional group or a bioactive molecule, which could be involved in a trapping mechanism to increase brain retention for longer time intervals. These results could be conveniently utilized to devise a new procedure for the production of a novel class of brain perfusion and/or brain receptor imaging agents.
    Bioconjugate Chemistry 01/2006; 17(2):419-28. · 4.82 Impact Factor

Publication Stats

2k Citations
579.03 Total Impact Points


  • 2006–2010
    • National Research Council
      Roma, Latium, Italy
  • 1968–2010
    • University of Padova
      • Department of Chemical Sciences
      Padua, Veneto, Italy
  • 2009
    • Ruhr-Universität Bochum
      • Fachbereich Anorganische Chemie
      Bochum, North Rhine-Westphalia, Germany
  • 2005–2006
    • University of Camerino
      • Dipartimento di Scienze Chimiche
      Camerino, The Marches, Italy
    • Ecole Nationale Supérieure de Chimie de Rennes
      Roazhon, Brittany, France
  • 2001
    • Centro di Progettazione, Design e Tecnologie dei Materiali
      Brindisi, Apulia, Italy
  • 2000
    • University of Rome Tor Vergata
      • Dipartimento di Scienze e Tecnologie Chimiche
      Roma, Latium, Italy
  • 1993
    • University of Gdansk
      • Faculty of Chemistry
      Danzig, Pomeranian Voivodeship, Poland
  • 1991
    • University of Catania
      • Department of Chemical Sciences
      Catania, Sicily, Italy
  • 1987
    • Technische Universität Dresden
      Dresden, Saxony, Germany
    • Philippine Nuclear Research Institute
      Manila, National Capital Region, Philippines
  • 1982–1984
    • University of Cincinnati
      • Department of Chemistry
      Cincinnati, OH, United States
  • 1975
    • Università degli studi di Parma
      Parma, Emilia-Romagna, Italy