Are you Anna Barfield?

Claim your profile

Publications (3)14.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No therapies have been proven to persistently improve the outcome of HTLV-I-associated myelopathy. Clinical benefit has been reported with zidovudine and with lamivudine in observational studies. We therefore conducted a randomised, double blind, placebo controlled study of six months combination therapy with these nucleoside analogues in sixteen patients. Primary outcomes were change in HTLV-I proviral load in PBMCs and clinical measures. Secondary endpoints were changes in T-cell subsets and markers of activation and proliferation. Six patients discontinued zidovudine. No significant changes in pain, bladder function, disability score, gait, proviral load or markers of T-cell activation or proliferation were seen between the two arms. Active therapy was associated with an unexplained decrease in CD8 and non-T lymphocyte counts. Failure to detect clinical improvement may have been due irreversible nerve damage in these patients with a long clinical history and future studies should target patients presenting earlier. The lack of virological effect but may reflect a lack of activity of these nucleoside analogues against HTLV-I RT in vivo, inadequate intracellular concentrations of the active moiety or the contribution of new cell infection to maintaining proviral load at this stage of infection may be relatively small masking the effects of RT inhibition.
    Retrovirology 02/2006; 3:63. · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CD8+ lymphocyte response is a main component of host immunity, yet it is difficult to quantify its contribution to the control of persistent viruses. Consequently, it remains controversial as to whether CD8+ cells have a biologically significant impact on viral burden and disease progression in infections such as human immunodeficiency virus-1 and human T-lymphotropic virus type I (HTLV-I). Experiments to ascertain the impact of CD8+ cells on viral burden based on CD8+ cell frequency or specificity alone give inconsistent results. Here, an alternative approach was developed that directly quantifies the impact of CD8+ lymphocytes on HTLV-I proviral burden by measuring the rate at which HTLV-I-infected CD4+ cells were cleared by autologous CD8+ cells ex vivo. It was demonstrated that CD8+ cells reduced the lifespan of infected CD4+ cells to 1 day, considerably shorter than the 30 day lifespan of uninfected cells in vivo. Furthermore, it was shown that HTLV-I-infected individuals vary considerably in the rate at which their CD8+ cells clear infected cells, and that this was a significant predictor of their HTLV-I proviral load. Forty to 50 % of between-individual variation in HTLV-I proviral load was explained by variation in the rate at which CD8+ cells cleared infected cells. This novel approach demonstrates that CD8+ cells are a major determinant of HTLV-I proviral load. This assay is applicable to quantifying the CD8+ cell response to other viruses and malignancies and may be of particular importance in assessing vaccines.
    Journal of General Virology 06/2005; 86(Pt 5):1515-23. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T cells predominate in early lesions in the CNS in the inflammatory disease human lymphotropic T cell virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), but the pathogenesis of the disease remains unclear and the HTLV-I-specific CD4(+) T cell response has been little studied. We quantified the IFN-gamma-producing HTLV-I-specific CD4(+) T cells, in patients with HAM/TSP and in asymptomatic carriers with high proviral load, to test two hypotheses: that HAM/TSP patients and asymptomatic HTLV-I carriers with a similar proviral load differ in the immunodominance hierarchy or the total frequency of specific CD4(+) T cells, and that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I. The strongest CD4(+) T cell response in both HAM/TSP patients and asymptomatic carriers was specific to Env. This contrasts with the immunodominance of Tax in the HTLV-I-specific CD8(+) T cell response. The median frequency of HTLV-I-specific IFN-gamma(+) CD4(+) T cells was 25-fold greater in patients with HAM/TSP (p = 0.0023, Mann-Whitney) than in asymptomatic HTLV-I carriers with a similar proviral load. Furthermore, the frequency of CD4(+) T cells infected with HTLV-I (expressing Tax protein) was significantly greater (p = 0.0152, Mann-Whitney) among HTLV-I-specific cells than CMV-specific cells. These data were confirmed by quantitative PCR for HTLV-I DNA. We conclude that the high frequency of specific CD4(+) T cells was associated with the disease HAM/TSP, and did not simply reflect the higher proviral load that is usually found in HAM/TSP patients. Finally, we conclude that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I.
    The Journal of Immunology 03/2004; 172(3):1735-43. · 5.52 Impact Factor