E A Grimm

University of Texas MD Anderson Cancer Center, Houston, Texas, United States

Are you E A Grimm?

Claim your profile

Publications (212)944.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutagen sensitivity assay, which measures the enhanced cellular response to DNA damage induced in vitro by mutagens/carcinogens, has been used in the study of cancer susceptibility. 4-Nitroquinoline-1-oxide (4-NQO), an ultraviolet (UV) radiation-mimetic chemical, can produce chromosomal breaks in mammalian cells and induce cancer. Given the potential role of 4-NQO as the experimental mutagen substituting for UV as the etiological carcinogen of cutaneous melanoma (CM), we tested the hypothesis that cellular sensitivity to 4-NQO is associated with the risk of developing CM in a case-control study of 133 patients with primary CM and 176 cancer-free controls. Short-term blood cultures were treated with 4-NQO at a final concentration of 10 μmol/l for 24 h and scored chromatid breaks in 50 well-spread metaphases. Multivariate logistic regression was used to calculate odds ratios and 95% confidence intervals. We found that the log-transformed frequency of chromatid breaks was significantly higher in 133 patients than in 176 controls (P=0.004) and was associated with an increased risk for CM (adjusted odds ratio=1.78, 95% confidence interval: 1.12-2.84) after adjustment for age and sex. Moreover, as the chromatid break values increased, the risk for CM increased in a dose-dependent manner (Ptrend=0.003). Further analysis explored a multiplicative interaction between the sensitivity to 4-NQO and a family history of skin cancer (Pinteraction=0.004) on the risk of CM. Therefore, our findings suggest that sensitivity to 4-NQO may be a risk factor for the risk of CM, which is more sensitive than UV-induced chromotid breaks.
    Melanoma research. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.
    Cancer Research 01/2014; · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nearly all primary uveal melanoma (UM) that metastasize involve the liver. Hepatocyte growth factor (HGF) is proposed to be an important microenvironmental element in attracting/supporting UM metastasis through activation of MET. The majority (>85%) of UM express mutations in the G-alpha proteins, that drive the MEK-ERK1/2 pathway. Thus, we proposed that the combination of MET and MEK inhibition would inhibit the growth and migration of G-alpha protein mutant versus non-mutant UM cells. Western-blots demonstrated the relative protein levels of ERK1/2 and MET in UM cells. Cells were treated with the small molecule inhibitors AZD6244 (MEKi) and/or MK-8033 (METi) and downstream markers evaluated. Further studies determined the effect of combination MEKi and METi treatment on cell growth, apoptosis and migration. All G-alpha protein mutant UM cell lines express MET mRNA and protein. The level of mRNA expression correlates with protein expression. MEKi, but not METi treatment results in markedly reduced ERK1/2 phosphorylation. Either MEKi or METi treatment alone results in reduced cell proliferation, but only modest induction of apoptosis. The combination MEKi+METi results in significant reduction of proliferation in G-alpha protein mutant cells. UM cell migration was blocked by METi, but not MEKi treatment. MET protein expression showed no correlation with G-alpha protein mutation status. Combining MEKi with METi treatment has added benefit to either treatment alone in reducing G-alpha protein mutant UM cell growth. Combining METi with MEKi treatment adds the effect of limiting uveal melanoma cell migration.
    PLoS ONE 01/2014; 9(2):e83957. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of inflammation in cancer has been reported in various adult malignant neoplasms. By contrast, its role in pediatric tumors has not been as well studied. In this study, we have identified and characterized the infiltration of various inflammatory immune cells as well as inflammatory markers in Wilms tumor (WT), the most common renal malignancy in children. Formalin-fixed paraffin-embedded blocks from tumors and autologous normal kidneys were immunostained for inflammatory immune cells (T cells, B cells, macrophages, neutrophils, and mast cells) and inflammatory markers such as cyclooxygenase-2 (COX-2), hypoxia-inducible factor 1α, phosphorylated STAT3, phosphorylated extracellular signal–related kinases 1 and 2, inducible nitric oxide synthase, nitrotyrosine, and vascular endothelial growth factor expression. Overall, we found that there was predominant infiltration of tumor-associated macrophages in the tumor stroma where COX-2 was robustly expressed. The other tumor-associated inflammatory markers were also mostly localized to tumor stroma. Hence, we speculate that COX-2–mediated inflammatory microenvironment may be important in WT growth and potential therapies targeting this pathway may be beneficial and should be tested in clinical settings for the treatment of WTs in children.
    Translational Oncology. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oral melanoma (OM) in dogs is an aggressive malignancy, with clinical behavior resembling cutaneous melanomas in humans. Melanoma in humans is promoted by an inflammatory environment that is contributed to by leptin and inducible nitric oxide synthase (iNOS). To determine if the patterns of leptin and iNOS expression are similar in OM in dogs and cutaneous melanomas in humans. Twenty client-owned dogs. Retrospective case study. Immunostaining of the OM tumors from each dog was scored for percentage and intensity of leptin and iNOS expression. Mitotic index was used as an indicator of tumor aggression. Leptin was detected in ≥75% of the tumor cells in specimens from 11 dogs. One tumor expressed leptin in ≤25% of the cells. The intensity of leptin expression was variable with 6, 9, and 5 cases exhibiting low-, moderate-, and high-intensity staining, respectively. OM with the lowest percentage of iNOS positive cells displayed the highest mitotic indices (P = .006, ANOVA). The expression of leptin is a common finding in melanomas in dogs. These data suggest that the possibility of future clinical applications, such as measuring the concentrations of plasma leptin as a screening tool or leptin as a target for therapy. The relevance of iNOS is not as clear in dogs with OM, for which other directed therapeutics might be more appropriate.
    Journal of Veterinary Internal Medicine 09/2013; 27(5):1278-82. · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely accepted that many cancers express features of inflammation, driven by both microenvironmental cells and factors, and the intrinsic production of inflammation-associated mediators from malignant cells themselves. Inflammation results in intracellular oxidative stress, with the ultimate biochemical oxidants composed of reactive nitrogens and oxygens. Although the role of inflammation in carcinogensis is well accepted, we now present data that inflammatory processes are also active in the maintenance phase of many aggressive forms of cancer. The oxidative stress of inflammation is proposed to drive a continuous process of DNA adducts and crosslinks, as well as posttranslational modifications to lipids and proteins that we argue support growth and survival. In this Perspective we introduce data on the emerging science of inflammation-driven posttranslational modifications on proteins responsible for driving growth, angiogenesis, immunosuppression, and inhibition of apoptosis. Examples include data from human melanoma, breast, head and neck, lung, and colon cancers. Fortunately, numerous anti-oxidant agents are clinically available, and we further propose that the pharmacological attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth inhibitory state. Our mouse model data using an arginine antagonist that prevents enzymatic production of nitric oxide, directly supports this view. We contend that selected antioxidants be considered as part of the cancer treatment approach, as they are likely to provide a novel and mechanistically justified addition for therapeutic benefit.
    Clinical Cancer Research 07/2013; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the most highly malignant skin cancer, and nucleotide excision repair (NER) is involved in melanoma susceptibility. In this analysis of 1,042 melanoma patients, we evaluated whether genetic variants of NER genes may predict survival outcome of melanoma patients. We used genotyping data of 74 tagging single-nucleotide polymorphisms (tagSNPs) in eight core NER genes from our genome-wide association study (including two in XPA, 14 in XPC, three in XPE, four in ERCC1, 10 in ERCC2, eight in ERCC3, 14 in ERCC4, and 19 in ERCC5) and evaluated their associations with prognosis of melanoma patients. Using the Cox proportional hazards model and Kaplan-Meier analysis, we found a predictive role of XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871 SNPs in the prognosis of melanoma patients (rs28720291: AG vs. GG, adjusted hazard ratio (adjHR)=11.2, 95% confidence interval (CI) 3.04-40.9, P=0.0003; rs4150314: AG vs. GG, adjHR=4.76, 95% CI 1.09-20.8, P=0.038; rs2470458: AA vs. AG/GG, adjHR=2.11, 95% CI 1.03-4.33, P=0.040; and rs50871: AA vs. AC/CC adjHR=2.27, 95% CI 1.18-4.35, P=0.015). Patients with an increasing number of unfavorable genotypes had markedly increased death risk. Genetic variants of NER genes, particularly XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871, may independently or jointly modulate survival outcome of melanoma patients. Because our results were based on a median follow-up of 3 years without multiple test corrections, additional large prospective studies are needed to confirm our findings.Journal of Investigative Dermatology advance online publication, 14 February 2013; doi:10.1038/jid.2012.498.
    Journal of Investigative Dermatology 02/2013; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In an earlier genome-wide association (GWA) study and the subsequent replications, three loci located in the melanocortin 1 receptor (MC1R) and TYR genes as well as the regions adjacent to MTAP and CDKN2A were identified to be risk factors for cutaneous melanoma (CM) (Bishop et al., 2009). However, this GWAS study did not cover all the potential genetic risk regions of susceptibility genes. More recently, three additional GWASs identified additional risk loci for CM, including a few SNPs in MC1R (Amos et al., 2011; Barrett et al., 2011; Macgregor et al., 2011). There are a number of SNPs in MC1R that contains only one exon, only a few of which have been included in the published GWASs; therefore, it is necessary to sequence the whole gene to provide a holistic view of the contribution of all MC1R SNPs to risk of CM (Meng et al., 2012). © 2013 John Wiley & Sons A/S.
    Pigment Cell & Melanoma Research 01/2013; · 5.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CDDO-Me has been shown to exert potent anti-inflammatory activity for chronic kidney disease and antitumor activity for several tumors, including melanoma, in early clinical trials. To improve CDDO-Me response in melanoma, we utilized a large-scale synthetic lethal RNAi screen targeting 6,000 human druggable genes to identify targets that would sensitize melanoma cells to CDDO-Me. Based on screening results, five unique genes (GNPAT, SUMO1, SPINT2, FLI1, and SSX1) significantly potentiated the growth-inhibitory effects of CDDO-Me and induced apoptosis in A375, a BRAF mutated melanoma line (P<0.001). These five genes were then individually validated as targets to potentiate CDDO-Me activity, and related downstream signaling pathways of these genes were analyzed. In addition, the levels of phosphorylated Erk1/2, Akt, GSK-2, and PRAS40 were dramatically decreased by downregulating each of these five genes separately, suggesting a set of common mediators. Our findings indicate that GNPAT, SUMO1, SPINT2, FLI1, and SSX1 play critical roles in synergy with inflammation pathways in modulating melanoma cell survival, and could serve as sensitizing targets to enhance CDDO-Me efficacy in melanoma growth control. © 2012 John Wiley & Sons A/S.
    Pigment Cell & Melanoma Research 10/2012; · 5.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAF). Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to confirm targets in BRAF(V600E)-positive melanoma cell lines and in tumors from melanoma patients undergoing inhibitor treatment. TAF lines generated from melanoma patient biopsies were tested for their ability to inhibit the function of tumor antigen-specific T cells, before and following treatment with BRAF(V600E)-upregulated immune modulators. Transcriptional analysis of treated TAFs was conducted to identify potential mediators of T-cell suppression. Expression of BRAF(V600E) induced transcription of interleukin 1 alpha (IL-1α) and IL-1β in melanocytes and melanoma cell lines. Further, vemurafenib reduced the expression of IL-1 protein in melanoma cell lines and most notably in human tumor biopsies from 11 of 12 melanoma patients undergoing inhibitor treatment. Treatment of melanoma-patient-derived TAFs with IL-1α/β significantly enhanced their ability to suppress the proliferation and function of melanoma-specific cytotoxic T cells, and this inhibition was partially attributable to upregulation by IL-1 of COX-2 and the PD-1 ligands PD-L1 and PD-L2 in TAFs. This study reveals a novel mechanism of immune suppression sensitive to BRAF(V600E) inhibition, and indicates that clinical blockade of IL-1 may benefit patients with BRAF wild-type tumors and potentially synergize with immunotherapeutic interventions. Clin Cancer Res; 18(19); 5329-40. ©2012 AACR.
    Clinical Cancer Research 07/2012; 18(19):5329-40. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Slug (Snai2), a member of the Snail family of zinc finger transcription factors, plays a role in the epithelial-to-mesenchymal transformation (EMT) that occurs during melanocyte emigration from the neural crest. A role for Slug in the EMT-like loss of cell adhesion and increased cell motility exhibited during melanoma progression has also been proposed. Our immunohistochemical studies of melanoma arrays, however, revealed that Slug expression was actually higher in nevi than in primary or metastatic melanomas. Moreover, Slug expression in melanomas was not associated with decreased expression of E-cadherin, the canonical Slug target in EMT. Comparisons of endogenous Slug and E-cadherin expression in cultured normal human melanocytes and melanoma cell lines supported our immunohistochemical findings. Expression of exogenous Slug in melanocytes and melanoma cells in vitro, however, suppressed E-cadherin expression, enhanced N-cadherin expression, and stimulated cell migration and invasion. Interestingly, both in tumors and cultured cell lines, there was a clear relationship between expression of Slug and MITF, a transcription factor known to regulate Slug expression during development. Taken together, our findings suggest that Slug expression during melanomagenesis is highest early in the process and that persistent Slug expression is not required for melanoma progression. The precise role of Slug in melanomagenesis remains to be elucidated and may be related to its interactions with other drivers of EMT, such as Snail.
    American Journal Of Pathology 04/2012; 180(6):2479-89. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signal transducer and activator of transcription 3 (STAT3) is a key molecular hub of tumorigenesis and immune suppression. The expression of phosphorylated STAT3 (p-STAT3) has been shown to be higher in melanoma metastasis to the central nervous system (CNS) relative to distant metastasis in the rest of the body (systemic). We sought to determine whether the increased expression of p-STAT3 in non-CNS systemic melanoma metastasis is associated with an increased risk of developing CNS metastasis and is a negative prognostic factor for overall survival time. We retrospectively identified 299 patients with stage IV melanoma. In a tissue microarray of systemic non-CNS metastasis specimens from these patients, we used immunohistochemical analysis to measure the percentage of cells with p-STAT3 expression and Kaplan-Meier survival estimates to analyze the association of p-STAT3 expression with median survival time, time to first CNS metastasis, and development of CNS metastasis. Lung metastases exhibited the highest level of p-STAT3 expression while spleen lesions had the lowest. The p-STAT3 expression was not associated with an increased risk of developing CNS metastasis or time to CNS metastasis. However, p-STAT3 expression was a negative prognostic factor for overall survival time in patients that did not develop CNS metastasis. Stage IV melanoma patients without CNS metastasis treated with p-STAT3 inhibitors in efficacy studies should be stratified based on tumor expression of p-STAT3; however since p-STAT3 expression is not associated with the risk of CNS disease, increased MRI surveillance of the brain is not likely necessary.
    Oncotarget 04/2012; 3(3):336-44. · 6.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is notoriously resistant to chemotherapy, but variable responses to biotherapies, including the IFNs and IL-2, provide intriguing avenues for further study. Systemic IL-2 treatment has provided significant clinical benefit in a minority of patients with metastatic melanoma, leading to long-term survival in a few cases. We hypothesize that one previously unidentified mechanism of effective IL-2 therapy is through direct upregulation of the tumor suppressor IL-24 in melanoma tumor cells resulting in growth suppression. In this study, five melanoma cell lines were treated with high dose recombinant human IL-2. Three (A375, WM1341, WM793) showed statistically significant increases in IL-24 protein; two (WM35, MeWo) remained negative for IL-24 message and protein. This increase was abolished by preincubating with anti-IL-2 antibody or blocking with antibodies against the IL-2 receptor chains. These IL-2 responsive melanoma cell lines expressed IL-2Rβ and IL-2Rγ mRNA. The IL-2Rβγ complex was functional, as measured by IL-2-induced signal transducers and activators of transcription activation as well as IL-15 signaling through its shared receptor complex. IL-24 upregulation was observed in response to either IL-2 or IL-15. Cell growth was significantly decreased by treatment of IL-24-positive cells with IL-2 or IL-15, whereas no effect was seen in negative cells. Incubating the IL-24 inducible-cells with anti-IL-24 antibody as well as transfecting with IL-24 small interfering RNA effectively reversed the growth suppression seen with IL-2. Thus, we have shown that one mechanism of clinically effective IL-2 therapy may be the direct action of IL-2 on a biologically distinct subset of melanoma cells leading to upregulation of the tumor suppressor IL-24.
    Melanoma research 02/2012; 22(1):19-29. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.
    Journal of skin cancer. 01/2012; 2012:410925.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of-function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2. Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks. Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6-10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10-25 fold increase) TUSC2 protein staining in post-treatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high post-treatment levels of TUSC2 mRNA and protein showed significant post-treatment changes in the intrinsic apoptotic pathway. Twenty-nine genes of the 82 tested in the apoptosis array were identified by Igenuity Pathway Analysis to be significantly altered post-treatment in both patients (Pearson correlation coefficient 0.519; p<0.01). DOTAP:chol-TUSC2 can be safely administered intravenously in lung cancer patients and results in uptake of the gene by human primary and metastatic tumors, transgene and gene product expression, specific alterations in TUSC2-regulated pathways, and anti-tumor effects (to our knowledge for the first time for systemic DOTAP:cholesterol nanoparticle gene therapy). ClinicalTrials.gov NCT00059605.
    PLoS ONE 01/2012; 7(4):e34833. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we reported on the associations of seven single nucleotide polymorphisms (SNPs) in the promoter region of MMP1 gene with susceptibility to cutaneous melanoma (CM). Considering the reported correlation between MMP1 expression and melanoma progression, we hypothesized that these promoter SNPs might affect CM progression and prognosis. In this study, we examined the associations of seven SNPs with overall survival, as well as six clinicopathological factors in 754 patients with CM. After adjustment for 11 covariates, we observed significant associations of the SNP -422A>T (rs475007) with ulceration status (P=0.012), primary tumor thickness (P=0.040), and anatomic site (P=0.030). We also observed significant associations of the SNP -755T>G (rs498186) with ulceration status (P=0.038) and anatomic site (P=0.003). Two SNPs, -839G>A and -519A>G, were marginally associated with primary tumor thickness, ulceration status, and anatomic site. Furthermore, the frequency of haplotype 2G-G-G-A-A-G-T was higher in patients with ulceration (odds ratio=2.18, 95% confidence interval: 1.08-4.40, P=0.030) compared with those without ulceration. However, we did not find significant associations of these SNPs with overall survival and other clinical factors. As primary tumor thickness and ulceration status are two important indicators of tumor progression and have significant associations with melanoma prognosis, our results suggested that these promoter SNPs in MMP1 might have potential effects on melanoma progression and prognosis by influencing related clinical factors.
    Melanoma research 12/2011; 22(2):169-75. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous melanomas can be divided into three mutually exclusive genetic subsets: tumors with mutated BRAF, tumors with mutated NRAS and tumors wild type at both loci (wt/wt). Targeted therapy for melanoma has been advancing with agents directed to mutated BRAF, accounting for 50% of melanoma patients. The c-Met pathway is known to play a role in melanoma tumorigenesis and preliminary data from our laboratory suggested that this pathway is preferentially activated in NRAS-mutated tumors. The objective of this study was to test the hypothesis that melanomas carrying the mutated NRAS genotype are uniquely sensitively to c-Met inhibition, thus providing rationale for therapeutic targeting of c-Met in this patient cohort. Using primary human melanomas with known BRAF/NRAS genotypes, we observed greater immunostaining for phosphorylated (activated) c-Met in NRAS-mutated and wt/wt tumors, compared to BRAF-mutated tumors. NRAS-mutated and wt/wt cell lines also demonstrated more robust c-Met activation in response to hepatocyte growth factor (HGF). Knock-down of mutated N-Ras, but not wild type N-Ras, by RNA interference resulted in decreased c-Met phosphorylation. Compared to BRAF mutants, NRAS-mutated melanoma cells were more sensitive to pharmacologic c-Met inhibition in terms of c-Met activation, Akt phosphorylation, tumor cell proliferation, migration and apoptosis. This enhanced sensitivity was observed in wt/wt cells as well, but was a less consistent finding. On the basis of these experimental results, we propose that c-Met inhibition may be a useful therapeutic strategy for melanomas with NRAS mutations, as well as some tumors with a wt/wt genotype.
    International Journal of Cancer 10/2011; 131(2):E56-65. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-1-mediated inflammation is proposed to contribute to the development and progression of some cancers. IL-1 family member proteins are known to be expressed constitutively in many melanoma tumor cells, and we hypothesize that these support molecular pathways of inflammation and facilitate tumor growth. To investigate the expression of IL-1α and IL-1β in melanoma patients, and their association with disease progression, immunohistochemical staining was carried out on tissues from 170 patients including benign nevi, primary melanomas, and metastatic melanomas. IL-1β levels were low (or zero) in benign nevi and higher in primary and metastatic melanomas (P < 0.0001). IL-1α was expressed in about 73% of nevi and 55% of metastatic melanomas, with levels significantly higher in primary tumors (P < 0.0001); most (98%) primary melanoma samples were positive for IL-1α. In vitro studies with seven human melanoma cell lines showed that five cell lines expressed IL-1α and IL-1β proteins and mRNA. We identified for the first time several important downstream signaling pathways affected by endogenous IL-1, including reactive oxygen and nitrogen species, COX-2, and phosphorylated NF-κB inhibitor (IκB) and stress-activated protein kinase/c-jun-NH(2)-kinase; all of which were decreased by siRNA to IL-1s. Downregulation of IL-1α, IL-1β, or MyD88 substantially increased p21 and p53 levels. Treatment with IL-1 receptor type I neutralizing antibody or IL-1 pathway-specific siRNAs led to growth arrest in IL-1-positive melanoma cells. Furthermore, blocking the IL-1 pathway increased autophagy in IL-1-positive melanoma cells. These results indicate that the endogenous IL-1 system is functional in most human melanoma and interrupting its signaling inhibits the growth of IL-1-positive melanoma cells.
    Molecular Cancer Research 09/2011; 9(11):1537-50. · 4.35 Impact Factor
  • Source
    Keiji Tanese, Elizabeth A Grimm, Suhendan Ekmekcioglu
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma appears to be heterogeneous in terms of its molecular biology, etiology and epidemiology. We previously reported that the expression of inducible nitric-oxide synthase (iNOS) in melanoma tumor cells is strongly correlated with poor patient survival. Therefore, we hypothesized that nitric oxide (NO) produced by iNOS promotes the melanoma inflammatory tumor microenvironment associated with poor outcome. To understand the role of NO and iNOS in the melanoma inflammatory tumor microenvironment, polymerase chain reaction arrays of inflammatory and autoimmunity genes were performed on a series of stage III melanoma lymph node metastasis samples to compare the gene expression profiles of iNOS-expressing and nonexpressing tumor samples. The results indicate that expression of CXC chemokine ligand 10 (CXCL10) was inversely correlated with iNOS expression, and the high CXCL10-expressing cases had more favorable prognoses than the low CXCL10-expressing cases. Functional studies revealed that treating iNOS-negative/CXCL10-positive melanoma cell lines with a NO donor suppressed the expression of CXCL10. Furthermore, scavenging NO from iNOS-expressing cell lines significantly affected the chemokine expression profile. Culture supernatants from NO scavenger-treated melanoma cells promoted the migration of plasmacytoid dendritic cells, which was diminished when the cells were treated with a CXCL10-neutralizing antibody. CXCL10 has been reported to be an antitumorigenic chemokine. Our study suggests that the production of NO by iNOS inhibits the expression of CXCL10 in melanoma cells and leads to a protumorigenic tumor microenvironment. Inhibiting NO induces an antitumorigenic environment, and thus, iNOS should be considered to be an important therapeutic target in melanoma.
    International Journal of Cancer 09/2011; 131(4):891-901. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10(-10)). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma.
    Human Molecular Genetics 09/2011; 20(24):5012-23. · 7.69 Impact Factor

Publication Stats

7k Citations
944.09 Total Impact Points

Institutions

  • 1988–2014
    • University of Texas MD Anderson Cancer Center
      • • Department of Melanoma Medical Oncology
      • • Department of Epidemiology
      • • Department of Experimental Therapeutics
      • • Department of NeuroSurgery
      • • Department of Bioimmunotherapy
      • • Department of Molecular and Cellular Oncology
      • • Department of Cancer Biology
      • • Department of Medical Oncology
      • • Department of Surgical Oncology
      • • Department of Thoracic Cardiovascular Surgery
      Houston, Texas, United States
    • Mercy Anderson Hospital
      Cincinnati, Ohio, United States
  • 2005
    • Baylor Health Care System
      Dallas, Texas, United States
  • 1988–1996
    • Baylor College of Medicine
      • Department of Neurosurgery
      Houston, Texas, United States
  • 1992
    • University of Texas Health Science Center at Houston
      • Division of General Surgery (LBJ)
      Houston, TX, United States
  • 1986–1987
    • National Eye Institute
      Maryland, United States
  • 1982–1986
    • National Institutes of Health
      • Branch of Surgery
      Maryland, United States
  • 1983–1984
    • National Cancer Institute (USA)
      • Surgery Branch
      Maryland, United States