M G Calavia

University of Oviedo, Oviedo, Asturias, Spain

Are you M G Calavia?

Claim your profile

Publications (14)30.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The coordinate neural regulation of the upper airways muscles is basic to control airway size and resistance. The superior constrictor pharyngeal muscle (SCPM) forms the main part of the lateral and posterior walls of the pharynx and typically is devoid of muscle spindles, the main type of proprioceptor. Because proprioception arising from SCPM is potentially important in the physiology of the upper airways, we have investigated if there are mechanical sensory nerve endings substitute for the muscle spindles. Samples of human pharynx were analyzed using immunohistochemistry associated to general axonic and Schwann cells markers (NSE, PGP 9.5, RT-97, and S100P), intrafusal muscle fiber markers, and putative mechanical sense proteins (TRPV4 and ASIC2). Different kinds of sensory corpuscles were observed in the pharynx walls (Pacini-like corpuscles, Ruffini-like corpuscles, spiral-wharves nerve structures, and others) which are supplied by sensory nerves and express putative mechanoproteins. No evidence of muscle spindles was observed. The present results demonstrate the occurrence of numerous and different morphotypes of sensory corpuscles/mechanoreceptors in human pharynx that presumably detect mechanical changes in the upper airways and replace muscle spindles for proprioception. Present findings are of potential interest for the knowledge of pathologies of the upper airways with supposed sensory pathogenesis. Anat Rec, 2013. © 2013 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 10/2013; · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nestin is an intermediate filament protein expressed in neuroepithelial stem cells during development and it is later replaced by cell specific neuronal or glial filaments. Nevertheless, nestin+ cells remain within adult tissues and they can be regarded as potential neural stem cell (NSC). Nestin+ cells have been detected in Schwann cells related with sensory corpuscles of rodent and they have been demonstrated to be NSC. We have investigated the existence of nestin+ in human cutaneous cells Meissner and Pacinian corpuscles through the use of immunohistochemistry techniques and in situ hybridization. S100 protein (also regarded as a marker for NSC) and vimentin (the intermediate filament of mature Schwann cells in sensory corpuscles) were also investigated. The results show that the adult human cutaneous sensory Meissner and Pacinian corpuscles contains a small population of Schwann-related cells (vimentin+) which on the basis of their basic immunohistochemical characteristics (S100 protein+, nestin+) can be potential NSCs. Cells sharing identical immunohistochemical profile were also found in the close vicinity of Meissner corpuscles. Because their localization they are easily accessible and may represent a peripheral niche of NSC to be used for therapeutic goals.
    CNS & neurological disorders drug targets 11/2012; · 3.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last decade skin biopsy has been confirmed as a tool to provide diagnostic information on some peripheral neuropathies. Most studies were focused on intraepithelial nerve fibers and few studies have investigated large myelinated fibers or whether corpuscles in human skin change quantitatively or qualitatively in pathologies of the peripheral or central nervous system. The main objective of this article is to provide a comprehensive review of Meissner's corpuscles including their distribution, density and age changes, development, molecular composition, cellular anatomy and physiology. We also describe their involvement in several pathologies and suggest including this dermal structure in the routine study of skin biopsies, looking for changes to be used as potential markers for several disorders. Finally the article draws the main aspects of how to study Meissner's corpuscles in skin biopsies and gives a view on future perspectives for implementing their use in clinical practice.
    CNS & neurological disorders drug targets 11/2012; · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retina of the adult zebrafish express brain-derived neurotrophic factor (BDNF) and its signaling receptor TrkB. This functional system is involved in the biology of the vertebrate retina and its expression is regulated by light. This study was designed to investigate the effects of cyclic (12 h light/12 h darkness) or continuous (24 h) exposure during 10 days to white light, white-blue light, and blue light, as well as of darkness, on the expression of BDNF and TrkB in the retina. BDNF and TrkB were assessed in the retina of adult zebrafish using quantitative real-time polymerase chain reaction and immunohistochemistry. Exposure to white, white-blue, and blue light causes a decrease of BDNF mRNA and of BDNF immunostaining, independently of the pattern of light exposition. Conversely, in the same experimental conditions, the expression of TrkB mRNA was upregulated and TrkB immunostaining increased. Exposition to darkness diminished BDNF and TrkB mRNAs, and abolished the immunostaining for BDNF but not modified that for TrkB. These results demonstrate the regulation of BDNF and TrkB by light in the retina of adult zebrafish and might contribute to explain some aspects of the complex pathophysiology of light-induced retinopathies. Microsc. Res. Tech., 2012. © 2012 Wiley Periodicals, Inc.
    Microscopy Research and Technique 10/2012; · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transient receptor potential (TRP) channels are involved in sensing mechanical/physical stimuli such as temperature, light, pressure, as well as chemical stimuli. Some TRP channels are present in the vertebrate retina, and the occurrence of the multifunctional channel TRP vanilloid 4 (TRPV4) has been reported in adult zebrafish. Here, we investigate the expression and distribution of TRPV4 in the retina of zebrafish during development using polymerase chain reaction (PCR), Western blot, and immunohistochemistry from 3 days post fertilization (dpf) until 100 dpf. TRPV4 was detected at the mRNA and protein levels in the eye of zebrafish at all ages sampled. Immunohistochemistry revealed the presence of TRPV4 in a population of the retinal cells identified as amacrine cells on the basis of their morphology and localization within the retina, as well as the co-localization of TRPV4 with calretinin. TRPV4 was first (3 dpf) found in the soma of cells localized in the inner nuclear and ganglion cell layers, and thereafter (10 dpf) also in the inner plexiform layer. The adult pattern of TRPV4 expression was achieved by 40 dpf the expression being restricted to the soma of some cells in the inner nuclear layer and ganglion cell layers. These data demonstrate the occurrence and developmental changes in the expression and localization of TRPV4 in the retina of zebrafish, and suggest a role of TRPV4 in the visual processing.
    Microscopy Research and Technique 02/2012; 75(6):743-8. · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish.
    Microscopy Research and Technique 06/2011; 75(1):89-96. · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission.
    Microscopy Research and Technique 05/2011; 74(5):457-63. · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASICs) in mammals monitor acid sensing and mechanoreception. They have a widespread expression in the central and peripheral nervous system, including the gut. The distribution of ASICs in zebrafish is known only in larvae and at the mRNA level. Here we have investigated the expression and cell distribution of ASIC2 in the gut of adult zebrafish using PCR, Western blot and immunohistochemistry. ASIC2 mRNA was detected in the gut, and a protein consistent with predicted ASIC2 (64kDa molecular mass) was detected by Western blot. ASIC2 positivity was found in a subpopulation of myenteric neurons in the enteric nervous system, as well in enteroendocrine epithelial cells. These data demonstrate for the first time the occurrence of ASIC2 in the gut of adult zebrafish where it presumably acts as a chemosensor and a mechanosensor.
    Neuroscience Letters 02/2011; 494(1):24-8. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.
    Journal of Anatomy 09/2010; 217(3):214-22. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
    Journal of Anatomy 04/2010; 217(1):1-15. · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASICs) are the members of the degenerin/epithelial sodium channel (Deg/ENaC) superfamily which mediate different sensory modalities including mechanosensation. ASICs have been detected in mechanosensory neurons as well as in peripheral mechanoreceptors. We now investigated the distribution of ASIC1, ASIC2, and ASIC3 proteins in human cutaneous Pacinian corpuscles using immunohistochemistry and laser confocal-scanner microscopy. We detected different patterns of expression of these proteins within Pacinian corpuscles. ASIC1 was detected in the central axon co-expressed with RT-97 protein, ASIC2 was expressed by the lamellar cells of the inner core co-localized with S100 protein, and ASIC3 was absent. These results demonstrate for the first time the differential distribution of ASIC1 and ASIC2 in human rapidly adapting low-threshold mechanoreceptors, and suggest specific roles of both proteins in mechanotransduction.
    Cellular and Molecular Neurobiology 03/2010; 30(6):841-8. · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To analyze the immunohistochemical profile of the human pancreatic pacinian corpuscles in comparison with that of the cutaneous pacinian corpuscles. In addition, we studied a Pacinilike corpuscle found in the adventitia of a pancreatic artery. We used immunohistochemistry to detect specific antigens for corpuscular constituents, specific antibodies for the identification of Adelta- and C-sensory fibers and for the detection of several growth factor receptors, and some members of the degenerin/epithelial Na channel superfamily of proteins. Approximately 62% of pancreatic pacinian corpuscles have 2 to 10 axonic profiles each enclosed by its own inner core: 1 or 2 of these axonic profiles displayed RT-97 immunoreactivity (specific marker of mechanical axons). The cutaneous pacinian corpuscles showed not more than 2 axonic profiles with identical immunohistochemical characteristics. The expression of glial fibrillary acidic protein, epithelial membrane antigen, and tyrosine receptor kinase B was different between pancreatic and cutaneous pacinian corpuscles; the pattern of distribution of degenerin/epithelial Na channel proteins was identical in both cases. The arterial Pacinilike corpuscles displayed a specific immunohistochemical profile. Pancreatic pacinian corpuscles slightly differ from the cutaneous ones, and these differences could be related to topography, growth factor requirements, or function of pacinian corpuscles in the pancreas.
    Pancreas 11/2009; 39(3):403-10. · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous Meissner corpuscles depend for development and survival exclusively on the NT system TrkB/BDNF/NT-4 unlike other types of sensory corpuscles and nerve endings, which have very complex neuronal and growth factor dependence. However, the pattern of expression of TrkB in human Meissner corpuscles is not known. The experiments in these studies were designed to pursue further findings that suggest that BDNF and NT-4 have critical roles in the development and maintenance of Meissner corpuscles by analyzing the pattern of expression of TrkB, their high-affinity receptor, in human glabrous skin. These experiments showed that TrkB is expressed in different patterns by the lamellar cells of Meissner corpuscles and not by the axon. The studies also show that while the percentage of Meissner corpuscles that express TrkB remains constant from birth till 50-year old cases, it decreases approximately 3-fold in subjects older than 50 years. These results are important since the study of Meissner corpuscles from cutaneous biopsies to diagnose some neurological diseases has rapidly become of high interest and therefore the proteins expressed in these corpuscles are potential diagnostic tools.
    Neuroscience Letters 10/2009; 468(2):106-9. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pacinian corpuscles are innervated by large myelinated Aalpha-beta axons from the large- and intermediate-sized sensory neurons of dorsal root ganglia. These neurons express different members of the degenerin/epithelial Na(+) channel (DEG/ENa(+)C) superfamily of proteins with putative mechanosensory properties, whose expression is regulated by the TrkB-BDNF system. Thus, we hypothesized that BDNF and/or NT-4 signalling through activation of TrkB may regulate the expression of molecules supposed to be necessary for the mechanosensory function of Pacinian corpuscles. To test this hypothesis we analyzed the expression and distribution of ENa(+)C subunits and acid-sensing ion channel 2 (ASIC2) in Pacinian corpuscles from 25 days old mice deficient in TrkB, BDNF and NT-4. Pacinian corpuscles in these animals are normal in number, structure, and expression of several immunohistochemical markers. Using immunohistochemistry we observed that the beta-ENa(+)C and gamma-ENa(+)C subunits, but not the alpha-ENa(+)C subunit, were expressed in wild-type animals, and they were always found in the central axon. ASIC2 immunoreactivity was found in both the central axon and the inner core cells. The absence of TrkB or BDNF abolished expression of beta-ENa(+)C and ASIC2, whereas expression of gamma-ENa(+)C did not change. Expression of beta-ENa(+)C and gamma-ENa(+)C subunits in NT-4 deficient mice was found in the axons but also in the inner core cells whereas levels of expression of ASIC2 were increased in these animals. This study suggests that expression in Pacianian corpuscles of some potential mechanosensory proteins is regulated by BDNF, NT-4 and TrkB.
    Neuroscience Letters 08/2009; 463(2):114-8. · 2.03 Impact Factor

Publication Stats

71 Citations
30.90 Total Impact Points

Institutions

  • 2009–2013
    • University of Oviedo
      • Department of Cell Biology and Morphology
      Oviedo, Asturias, Spain
    • Universidad Católica San Antonio de Murcia
      • Departamento de Ciencias de la Salud
      Murcia, Murcia, Spain
  • 2012
    • Complutense University of Madrid
      • Departamento de Óptica II (Optometría y Visión)
      Madrid, Madrid, Spain
  • 2011
    • Università degli Studi di Messina
      • Dipartimento di Medicina Clinica e Sperimentale
      Messina, Sicily, Italy