Irene Bosch

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Are you Irene Bosch?

Claim your profile

Publications (31)107.59 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Virus Pathogen Resource (ViPR; www.viprbrc.org) and Influenza Research Database (IRD; www.fludb.org) have developed a metadata-driven Comparative Analysis Tool for Sequences (meta-CATS), which performs statistical comparative analyses of nucleotide and amino acid sequence data to identify correlations between sequence variations and virus attributes (metadata). Meta-CATS guides users through: selecting a set of nucleotide or protein sequences; dividing them into multiple groups based on any associated metadata attribute (e.g. isolation location, host species); performing a statistical test at each aligned position; and identifying all residues that significantly differ between the groups. As proofs of concept, we have used meta-CATS to identify sequence biomarkers associated with dengue viruses isolated from different hemispheres, and to identify variations in the NS1 protein that are unique to each of the 4 dengue serotypes. Meta-CATS is made freely available to virology researchers to identify genotype-phenotype correlations for development of improved vaccines, diagnostics, and therapeutics.
    Virology 12/2013; 447(1-2):45-51. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: There are very few strategies for the early detection of the patients who might develop the severe form of the illness. Objective: To evaluate the utility of serum levels of some immune response mediators as early biomarkers for the severe dengue prognosis during the early phase of the illness. Materials and methods: Using a case-control design nested in a multicenter cohort from the AEDES network (a Colombian multicenter study), we compared TNF a, ST2, TRAIL and IDO levels in samples which were obtained during the early phase of the illness. Results: ST2, TRAIL and TNF a levels were higher in severe dengue patients compared with uncomplicated patients (p<0.0001), as follows: OR=24.8, CI95%= 6.1- 98.0; OR=18.0, CI95%= 4.6-69.1; OR=NC, CI95%= NC, respectively. We did not find statistically significant differences between IDO levels in severe dengue and uncomplicated dengue (p=1.000, OR=1.0, CI95%= 0.2-6.1). Conclusions: In the early phase of the dengue infection (96 hours), ST2, TRAIL and TNF a quantifications could contribute to the prediction of complications of the illness.
    Biomédica: revista del Instituto Nacional de Salud 09/2013; 33 Suppl 1:108-16. · 0.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS) and nonsynonimous (dN) substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS . 1) and 8 under significant purifying selection (dN/dS , 1). We found several polymorphic amino acid coding sites in the envelope (15), NS1 (17), NS2A (11), and NS5 (24) genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak. Copyright: ß 2013 Villabona-Arenas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: CJVA holds a FAPESP scholarship (2011/17071-2); PMAZ and MLN hold a CNPq-PQ scholarship, AM holds an INCT -Dengue scholarship. This work was funded by FAPESP process number 10/19059-7 (PMAZ), by INCT-Dengue and PRONEX-Dengue (CNPq to MLN) and FAPESP Grants # 2012/11733-6 and 2011/ 10458-9 to MLN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 05/2013; PLoS ONE 8(5): e63496. doi:10.1371/journal.pone.0063496. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80's. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998-2000) and BR3 (2003-05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue.
    PLoS ONE 03/2013; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of early determinants of dengue disease progression, which could potentially enable individualized patient care are needed at present times. Soluble ST2 (sST2) has been recently reported to be elevated in the serum of children older than 2years old and adults with dengue infection and it was correlated with secondary infections as well as with severe presentations of the disease. The mechanism by which secreted ST2 is linked to severe dengue and plasma leakage remains unclear. One possibility is that IL-33 ligand may be elevated, contributing to membrane bound ST2 as part of the immune activation in dengue infection. We determined plasma levels of sST2 and the ligand IL-33 in 66 children with acute secondary dengue infections clinically classified using the guidelines of the World Health Organization, 2009. Dengue infection showed significant increases in cytokines IL-12p70, IL-10, IL-8, IL-6, IL-1β and TNFα measured by flow cytometry based assay compared to uninfected individuals. In contrast, IL-33 levels remained unchanged between infected and uninfected individuals. The levels of sST2 positively correlated with values of IL-6 and IL-8 and inversely correlated with number of median value of platelet levels. In addition to circulating cytokine positive correlations we found that sST2 and isoenzyme creatine kinase-MB (CK-MB), a marker of myocardial muscle damage present in severe dengue cases were associated. Our pediatric study concluded that in dengue infections sST2 elevation does not involve concomitant changes of IL-33 ligand. We propose a study to assess its value as a predictor factor of disease severity.
    Cytokine 01/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to detect West Nile virus (WNV) in Brazil, we sampled serum from horses and chickens from the Pantanal region of the state of Mato Grosso and tested for flavivirus-reactive antibodies by blocking ELISA. The positive samples were further confirmed for serological evidence of WNV infection in three (8%) of the 38 horses and one (3.2%) of the 31 chickens using an 80% plaque-reduction neutralisation test (PRNT80). These results provide evidence of the circulation of WNV in chickens and horses in Pantanal.
    Memórias do Instituto Oswaldo Cruz 12/2012; 107(8):1073-5. · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following successive outbreaks of dengue fever caused predominantly by dengue virus (DENV) 2 and 3, DENV-1 is now the primary serotype circulating in Brazil. We sequenced and analyzed Brazilian DENV-1 genomes and found that all isolates belong to genotype V and are subdivided into three lineages, which were introduced during four different events. The first introduction occurred in 1984-85, the second in 1997-99, and the third and fourth occurred from 2004 to 2007. These events were associated with an increase in genetic diversity but not with positive selection. Moreover, a potential new recombinant strain derived from two distinct lineages was detected. We demonstrate that the dynamics of DENV-1 in Brazil is characterized by introduction, movement, local evolution, and lineage replacement. This study strengthens the relevance of genotype surveillance in order to identify, trace, and control virus populations circulating in Brazil and Latin America.
    Archives of Virology 07/2012; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Following successive outbreaks of dengue fever caused predominantly by dengue virus (DENV) 2 and 3, DENV-1 is now the primary serotype circulating in Brazil. We sequenced and analyzed Brazilian DENV-1 genomes and found that all isolates belong to genotype V and are subdivided into three lineages, which were intro-duced during four different events. The first introduction occurred in 1984-85, the second in 1997-99, and the third and fourth occurred from 2004 to 2007. These events were associated with an increase in genetic diversity but not with positive selection. Moreover, a potential new recombinant strain derived from two distinct lineages was detected. We demonstrate that the dynamics of DENV-1 in Brazil is characterized by introduction, movement, local evolution, and lineage replacement. This study strengthens the rele-vance of genotype surveillance in order to identify, trace, and control virus populations circulating in Brazil and Latin America.
    Archives of Virology 07/2012; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following successive outbreaks of dengue fever caused predominantly by dengue virus (DENV) 2 and 3, DENV-1 is now the primary serotype circulating in Brazil. We sequenced and analyzed Brazilian DENV-1 genomes and found that all isolates belong to genotype V and are subdivided into three lineages, which were introduced during four different events. The first introduction occurred in 1984-85, the second in 1997-99, and the third and fourth occurred from 2004 to 2007. These events were associated with an increase in genetic diversity but not with positive selection. Moreover, a potential new recombinant strain derived from two distinct lineages was detected. We demonstrate that the dynamics of DENV-1 in Brazil is characterized by introduction, movement, local evolution, and lineage replacement. This study strengthens the relevance of genotype surveillance in order to identify, trace, and control virus populations circulating in Brazil and Latin America.
    Archives of Virology 07/2012; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies of mice have demonstrated that an orchestrated sequence of innate and adaptive immune responses is required to control West Nile virus (WNV) infection in peripheral and central nervous system (CNS) tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; also known as CD253) has been reported to inhibit infection with dengue virus, a closely related flavivirus, in cell culture. To determine the physiological function of TRAIL in the context of flavivirus infection, we compared the pathogenesis of WNV in wild-type and TRAIL(-/-) mice. Mice lacking TRAIL showed increased vulnerability and death after subcutaneous WNV infection. Although no difference in viral burden was detected in peripheral tissues, greater viral infection was detected in the brain and spinal cord at late times after infection, and this was associated with delayed viral clearance in the few surviving TRAIL(-/-) mice. While priming of adaptive B and T cell responses and trafficking of immune and antigen-specific cells to the brain were undistinguishable from those in normal mice, in TRAIL(-/-) mice, CD8(+) T cells showed qualitative defects in the ability to clear WNV infection. Adoptive transfer of WNV-primed wild-type but not TRAIL(-/-) CD8(+) T cells to recipient CD8(-/-) mice efficiently limited infection in the brain and spinal cord, and analogous results were obtained when wild-type or TRAIL(-/-) CD8(+) T cells were added to WNV-infected primary cortical neuron cultures ex vivo. Collectively, our results suggest that TRAIL produced by CD8(+) T cells contributes to disease resolution by helping to clear WNV infection from neurons in the central nervous system.
    Journal of Virology 06/2012; 86(17):8937-48. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus currently causes 50-100 million infections annually. Comprehensive knowledge about the evolution of Dengue in response to selection pressure is currently unavailable, but would greatly enhance vaccine design efforts. In the current study, we sequenced 187 new dengue virus serotype 3 (DENV-3) genotype III whole genomes isolated from Asia and the Americas. We analyzed them together with previously-sequenced isolates to gain a more detailed understanding of the evolutionary adaptations existing in this prevalent American serotype. In order to analyze the phylogenetic dynamics of DENV-3 during outbreak periods; we incorporated datasets of 48 and 11 sequences spanning two major outbreaks in Venezuela during 2001 and 2007-2008, respectively. Our phylogenetic analysis of newly sequenced viruses shows that subsets of genomes cluster primarily by geographic location, and secondarily by time of virus isolation. DENV-3 genotype III sequences from Asia are significantly divergent from those from the Americas due to their geographical separation and subsequent speciation. We measured amino acid variation for the E protein by calculating the Shannon entropy at each position between Asian and American genomes. We found a cluster of seven amino acid substitutions having high variability within E protein domain III, which has previously been implicated in serotype-specific neutralization escape mutants. No novel mutations were found in the E protein of sequences isolated during either Venezuelan outbreak. Shannon entropy analysis of the NS5 polymerase mature protein revealed that a G374E mutation, in a region that contributes to interferon resistance in other flaviviruses by interfering with JAK-STAT signaling was present in both the Asian and American sequences from the 2007-2008 Venezuelan outbreak, but was absent in the sequences from the 2001 Venezuelan outbreak. In addition to E, several NS5 amino acid changes were unique to the 2007-2008 epidemic in Venezuela and may give additional insight into the adaptive response of DENV-3 at the population level.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 09/2011; 11(8):2011-9. · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue infection demonstrates a wide spectrum of clinical manifestations from mild disease (dengue fever) to severe dengue hemorrhagic fever, but the immunopathogenic mechanisms involved in disease severity are not clear. Differentially expressed genes associated to immune response were identified from peripheral blood mononuclear cells of Colombian children with dengue fever and dengue hemorrhagic fever. Microarray analysis was used as a tool to establish and compare transcriptional profiles of peripheral blood mononuclear cells of six children in acute phase of dengue fever and dengue hemorrhagic fever. The commercial gene chip used was Affymnetrix GeneChip HG_U133_Plus_2. Dengue hemorrhagic fever patients expressed interleukin 6, chemokines, complement proteins and pentraxin 3, along with the lymphocyte inhibitors lymphocyte-activation gene 3 and cathepsin L1. An interaction model for these genes showed tissue factor playing a central role in the network generated. In contrast, dengue fever patients expressed cytokines, complement and the leukotrienes inhibitors lactotransferrin, C1 inhibitor, and leukotriene-B (4-omega-hydroxylase 2). These results indicate that in dengue fever, cytokine and complement inhibitors are able to limit endothelial damage and prevent increases in vascular permeability, whereas dengue- hemorrhagic fever patients have immune cell dysfunction and unregulated complement and cytokine action. This leads to "hypercoagulation" and endothelial damage, thereby increasing disease severity. Verification of the pathogenic role of the identified molecules will contribute to understanding of dengue pathogenesis and lead to rational development of therapeutic drugs.
    Biomédica: revista del Instituto Nacional de Salud 12/2010; 30(4):587-97. · 0.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue fever is one of the most significant re-emerging tropical diseases, despite our expanding knowledge of the disease, viral tropism is still not known to target heart tissues or muscle. A prospective pediatric clinical cohort of 102 dengue hemorrhagic fever patients from Colombia, South America, was followed for 1 year. Clinical diagnosis of myocarditis was routinely performed. Electrocardiograph and echocardiograph analysis were performed to confirm those cases. Immunohistochemistry for detection of dengue virus and inflammatory markers was performed on autopsied heart tissue. In vitro studies of human striated skeletal fibers (myotubes) infected with dengue virus were used as a model for myocyte infection. Measurements of intracellular Ca2+ concentration as well as immunodetection of dengue virus and inflammation markers in infected myotubes were performed. Eleven children with dengue hemorrhagic fever presented with symptoms of myocarditis. Widespread viral infection of the heart, myocardial endothelium, and cardiomyocytes, accompanied by inflammation was observed in 1 fatal case. Immunofluorescence confocal microscopy showed that myotubes were infected by dengue virus and had increased expression of the inflammatory genes and protein IP-10. The infected myotubes also had increases in intracellular Ca2+ concentration. Vigorous infection of heart tissues in vivo and striated skeletal cells in vitro are demonstrated. Derangements of Ca2+ storage in the infected cells may directly contribute to the presentation of myocarditis in pediatric patients.
    The Pediatric Infectious Disease Journal 03/2010; 29(3):238-42. · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interleukin-1 receptor-like-1 protein (IL1RL1), also known as ST2, has been shown previously to regulate T-cell function and is produced by T cells and endothelial cells. It was reported recently to be elevated in mild dengue patients during acute disease. The ST2 gene encodes several splice products: L (long), V (short) and s (soluble). A cohort of 38 patients with dengue haemorrhagic fever (DHF) and mild dengue fever (DF) were evaluated using a secreted soluble ST2 (sST2) ELISA. The RNA expression of ST2 was evaluated by real-time quantitative RT-PCR using patients' peripheral blood mononuclear cells (PBMCs) and in vitro using human umbilical vein endothelial cells (HUVECs) exposed to sera from dengue patients. DHF patients had higher levels of serum sST2, tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-8 and IL-10 compared with DF patients and normal healthy control individuals. However, viraemia was indistinguishable between mild and severe cases. No changes in ST2 mRNA expression were found in PBMCs from these two groups of dengue patients. In vitro, sST2 was elevated in HUVECs treated with patient sera. Neutralization of TNF-alpha in patient sera by pre-treatment with a TNF-alpha antibody inhibited the upregulation of sST2 expression in HUVECs. These results implicate serum TNF-alpha in the modulation of expression of sST2 in an in vitro system, and indicate that sST2 could be associated with the severity of disease. Further studies to determine whether sST2 levels are predictive of the severe form of the disease and the role of sST2 in immune regulation are warranted.
    Journal of General Virology 11/2009; 91(Pt 3):697-706. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used gene expression profiling of human primary cells infected in vitro with dengue virus (DENV) as a tool to identify secreted mediators induced in response to the infection. Affymetrix GeneChip analysis of human primary monocytes, B cells and dendritic cells infected with DENV in vitro showed strong induction of monocyte chemotactic protein 2 (MCP-2/CCL8), interferon gamma-induced protein 10 (IP-10/CXCL10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/TNFSF10). The expression of these genes was confirmed in dendritic cells infected with DENV in vitro at mRNA and protein levels. A prospectively enrolled cohort of DENV-infected Venezuelan patients was used to measure the levels of these proteins in serum during three different periods of the disease. Results showed significant increase of MCP-2, IP-10, and TRAIL levels in patients infected with DENV during the febrile period, when compared to healthy donors and patients with other febrile illnesses. MCP-2 and IP-10 levels were still elevated during the post-febrile period while TRAIL levels dropped close to normal after defervescense. Patients with primary infections had higher TRAIL levels than patients with secondary infections during the febrile period of the disease. Increased levels of IP-10, TRAIL and MCP-2 in acute DENV infections suggest a role for these mediators in the immune response to the infection. MCP-2 was identified in this work as a new unreported and important dengue-related protein and IP-10 was confirmed as a novel and strong pro-inflammatory marker in acute disease.
    Journal of Medical Virology 07/2009; 81(8):1403-11. · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-gamma) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-gamma against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo.
    Journal of General Virology 05/2009; 90(Pt 4):810-7. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) is a mosquito-borne flavivirus that causes an acute febrile disease in humans, characterized by musculoskeletal pain, headache, rash and leukopenia. The cause of myalgia during DENV infection is still unknown. To determine whether DENV can infect primary muscle cells, human muscle satellite cells were exposed to DENV in vitro. The results demonstrated for the first time high-efficiency infection and replication of DENV in human primary muscle satellite cells. Changes in global gene expression were also examined in these cells following DENV infection using Affymetrix GeneChip analysis. The differentially regulated genes belonged to two main functional categories: cell growth and development, and antiviral type I interferon (IFN) response genes. Increased expression of the type I IFN response genes for tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), melanoma-derived antigen 5 (MDA-5), IFN-gamma-inducible protein 10 (IP-10), galectin 3 soluble binding protein (LGals3BP) and IFN response factor 7 (IRF7) was confirmed by quantitative RT-PCR. Furthermore, higher levels of cell-surface-bound intracellular adhesion molecule-1 (ICAM-1) and soluble ICAM-1 in the cell-culture medium were detected following DENV infection. However, DENV infection impaired the ability of the infected cells in the culture medium to upregulate cell-surface expression of MHC I molecules, suggesting a possible mechanism of immune evasion by DENV. The findings of this study warrant further clinical research to identify whether muscle cells are targets for DENV infection during the acute stage of the disease in vivo.
    Journal of General Virology 08/2008; 89(Pt 7):1605-15. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Levels of the soluble form of the interleukin-1 receptor-like 1 protein (IL-1RL-1/ST2) are elevated in the serum of patients with diseases characterized by an inflammatory response. The objective of this study was to determine the concentration of soluble ST2 (sST2) in dengue infected patients during the course of the disease. Twenty-four patients with confirmed dengue infection, classified as dengue fever, and 11 patients with other febrile illness (OFI) were evaluated. Levels of sST2 in serum and laboratory variables usually altered during dengue infections were measured. Dengue infected patients had higher serum sST2 levels than OFI at the end of the febrile stage and at defervescence (p=0.0088 and p=0.0004, respectively). Patients with secondary dengue infections had higher serum sST2 levels compared with patients with primary dengue infections (p=0.047 at last day of fever and p=0.030 at defervescence). Furthermore, in dengue infected patients, we found a significant negative correlation of sST2 with platelet and WBC counts, and positive correlation with thrombin time and transaminases activity. We suggest that sST2 could be a potential marker of dengue infection, could be associated with severity or could play a role in the immune response in secondary dengue virus infection.
    Cytokine 03/2008; 41(2):114-20. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue fever is an important tropical illness for which there is currently no virus-specific treatment. To shed light on mechanisms involved in the cellular response to dengue virus (DV), we assessed gene expression changes, using Affymetrix GeneChips (HG-U133A), of infected primary human cells and identified changes common to all cells. The common response genes included a set of 23 genes significantly induced upon DV infection of human umbilical vein endothelial cells (HUVECs), dendritic cells (DCs), monocytes, and B cells (analysis of variance, P < 0.05). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one of the common response genes, was identified as a key link between type I and type II interferon response genes. We found that DV induces TRAIL expression in immune cells and HUVECs at the mRNA and protein levels. The induction of TRAIL expression by DV was found to be dependent on an intact type I interferon signaling pathway. A significant increase in DV RNA accumulation was observed in anti-TRAIL antibody-treated monocytes, B cells, and HUVECs, and, conversely, a decrease in DV RNA was seen in recombinant TRAIL-treated monocytes. Furthermore, recombinant TRAIL inhibited DV titers in DV-infected DCs by an apoptosis-independent mechanism. These data suggest that TRAIL plays an important role in the antiviral response to DV infection and is a candidate for antiviral interventions against DV.
    Journal of Virology 01/2008; 82(1):555-64. · 5.08 Impact Factor
  • Source
    Emerging infectious diseases 05/2007; 13(4):651-3. · 5.99 Impact Factor

Publication Stats

626 Citations
107.59 Total Impact Points

Institutions

  • 2012–2013
    • Massachusetts Institute of Technology
      • Division of Health Sciences and Technology
      Cambridge, Massachusetts, United States
  • 2002–2011
    • University of Massachusetts Medical School
      • • Center for Infectious Disease & Vaccine Research
      • • Department of Medicine
      Worcester, Massachusetts, United States
  • 2010
    • South Colombian University
      Нейва, Huila, Colombia
  • 2008
    • Brown University
      Providence, Rhode Island, United States
  • 2000
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1998
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States