Patrizia Rizzu

Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, North Rhine-Westphalia, Germany

Are you Patrizia Rizzu?

Claim your profile

Publications (67)575.57 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic factors are important in all forms of dementia, especially in early onset dementia. The frequency of major gene defects in dementia has not been investigated in the Netherlands. Furthermore, whether the recently in a FTD family identified PRKAR1B gene is associated with an Alzheimer's disease (AD) like phenotype, has not been studied. With this study, we aimed to investigate the mutation frequency of the major AD and FTD genes and the PRKAR1B gene in a well-defined Dutch cohort of patients with early onset dementia. Mutation analysis of the genes PSEN1, APP, MAPT, GRN, C9orf72 and PRKAR1B was performed on DNA of 229 patients with the clinical diagnosis AD and 74 patients with the clinical diagnosis FTD below the age of 70 years. PSEN1 and APP mutations were found in, respectively 3.5 and 0.4 % of AD patients, and none in FTD patients. C9orf72 repeat expansions were present in 0.4 % of AD and in 9.9 % of FTD patients, whereas MAPT and GRN mutations both were present in 0.4 % in AD patients, and in 1.4 % resp. 2.7 % in FTD patients. We did not find any pathogenic mutations in the PRKAR1B gene. PSEN1 mutations are the most common genetic cause in Dutch AD patients, whereas MAPT and GRN mutations were found in less than 5 percent. C9orf72 repeat expansions were the most common genetic defect in FTD patients. No pathogenic PRKAR1B mutations were found in the early onset AD and FTD patients of our study.
    Journal of neurology. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. METHODS: We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10(-8)) single-nucleotide polymorphisms. FINDINGS: We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10(-8)). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1·05 × 10(-8); odds ratio=1·204 [95% CI 1·11-1·30]), rs9268856 (p=5·51 × 10(-9); 0·809 [0·76-0·86]) and rs1980493 (p value=1·57 × 10(-8), 0·775 [0·69-0·86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10(-7); 0·814 [0·71-0·92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. INTERPRETATION: Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD
    The Lancet Neurology 07/2014; 3(7):686-99. · 23.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
    Nature 03/2014; 507(7493):455-61. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
    Nature 03/2014; 507(7493):462-70. · 38.60 Impact Factor
  • Source
    PLoS Medicine 06/2013; · 15.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary spastic paraplegias constitute a heterogeneous group of neurodegenerative diseases encompassing pure and complicated forms, for which at least 52 loci and 31 causative genes have been identified. Although mutations in the SPAST gene explain approximately 40% of the pure autosomal dominant forms, molecular diagnosis can be challenging for the sporadic and recessive forms, which are often complicated and clinically overlap with a broad number of movement disorders. The validity of exome sequencing as a routine diagnostic approach in the movement disorder clinic needs to be assessed. The main goal of this study was to explore the usefulness of an exome analysis for the diagnosis of a complicated form of spastic paraplegia. Whole-exome sequencing was performed in two Spanish siblings with a neurodegenerative syndrome including upper and lower motor neuron, ocular and cerebellar signs. Exome sequencing revealed that both patients carry a novel homozygous nonsense mutation in exon 15 of the SPG11 gene (c.2678G>A; p.W893X), which was not found in 584 Spanish control chromosomes. After many years of follow-up and multiple time-consuming genetic testing, we were able to diagnose these patients by making use of whole-exome sequencing, showing that this is a cost-efficient diagnostic tool for the movement disorder specialist.
    Clinical Genetics 02/2013; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.
    Neurobiology of aging 02/2013; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: We aimed to investigate whether cognitive deficits and structural and functional connectivity changes can be detected before symptom onset in a large cohort of carriers of microtubule-associated protein tau and progranulin mutations. METHODS: In this case-control study, 75 healthy individuals (aged 20-70 years) with 50% risk for frontotemporal dementia (FTD) underwent DNA screening, neuropsychological assessment, and structural and functional MRI. We used voxel-based morphometry and tract-based spatial statistics for voxelwise analyses of gray matter volume and diffusion tensor imaging measures. Using resting-state fMRI scans, we assessed whole-brain functional connectivity to frontoinsula, anterior midcingulate cortex (aMCC), and posterior cingulate cortex. RESULTS: Although carriers (n = 37) and noncarriers (n = 38) had similar neuropsychological performance, worse performance on Stroop III, Ekman faces, and Happé cartoons correlated with higher age in carriers, but not controls. Reduced fractional anisotropy and increased radial diffusivity throughout frontotemporal white matter tracts were found in carriers and correlated with higher age. Reductions in functional aMCC connectivity were found in carriers compared with controls, and connectivity between frontoinsula and aMCC seeds and several brain regions significantly decreased with higher age in carriers but not controls. We found no significant differences or age correlations in posterior cingulate cortex connectivity. No differences in regional gray matter volume were found. CONCLUSIONS: This study convincingly demonstrates that alterations in structural and functional connectivity develop before the first symptoms of FTD arise. These findings suggest that diffusion tensor imaging and resting-state fMRI may have the potential to become sensitive biomarkers for early FTD in future clinical trials.
    Neurology 02/2013; · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future.
    The American Journal of Human Genetics 01/2013; · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is a psychiatric disorder, characterized by periods of low mood of more than two weeks, loss of interest in normally enjoyable activities and behavioral changes. MDD is a complex disorder and does not have a single genetic cause. In 2009 a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. Many of the top signals of this GWAS mapped to a region spanning the gene PCLO, and the non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became genome wide significant after post-hoc analysis. We performed resequencing of PCLO, GRM7, and SLC6A4 in 50 control samples from the GAIN-MDD cohort, to detect new genomic variants. Subsequently, we genotyped these variants in the entire GAIN-MDD cohort and performed association analysis to investigate if rs2522833 is the causal variant or simply in linkage disequilibrium with a more associated variant. GRM7 and SLC6A4 are both candidate genes for MDD from literature. We aimed to gather more evidence that rs2522833 is indeed the causal variant in the GAIN-MDD cohort or to find a previously undetected common variant in either PCLO, GRM7, or SLC6A4 with a higher association in this cohort. After next generation sequencing and association analysis we excluded the possibility of an undetected common variant to be more associated. For neither PCLO nor GRM7 we found a more associated variant. For SLC6A4, we found a new SNP that showed a lower P-value (P = 0.07) than in the GAIN-MDD GWAS (P = 0.09). However, no evidence for genome-wide significance was found. Although we did not take into account rare variants, we conclude that our results provide further support for the hypothesis that the non-synonymous coding SNP rs2522833 in the PCLO gene is indeed likely to be the causal variant in the GAIN-MDD cohort.
    PLoS ONE 01/2013; 8(11):e79921. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future.
    The American Journal of Human Genetics 01/2013; · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: P-glycoprotein is a blood--brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide polymorphisms in the ABCB1 gene have been associated with altered P-glycoprotein expression and function. P-glycoprotein function at the blood--brain barrier can be quantified in vivo using the P-glycoprotein substrate tracer (R)-[11C]verapamil and positron emission tomography (PET). The purpose of this study was to assess the effects of C1236T, G2677T/A and C3435T single-nucleotide polymorphisms in ABCB1 on blood--brain barrier P-glycoprotein function in healthy subjects and patients with Alzheimer's disease. METHODS: Thirty-two healthy subjects and seventeen patients with Alzheimer's disease underwent 60-min dynamic (R)-[11C]verapamil PET scans. The binding potential of (R)-[11C]verapamil was assessed using a previously validated constrained two-tissue plasma input compartment model and used as outcome measure. DNA was isolated from frozen blood samples and C1236T, G2677T/A and C3435T single-nucleotide polymorphisms were amplified by polymerase chain reaction. RESULTS: In healthy controls, binding potential did not differ between subjects without and with one or more T present in C1236T, G2677T and C3435T. In contrast, patients with Alzheimer's disease with one or more T in C1236T, G2677T and C3435T had significantly higher binding potential values than patients without a T. In addition, there was a relationship between binding potential and T dose in C1236T and G2677T. CONCLUSIONS: In Alzheimer's disease patients, C1236T, G2677T/A and C3435T single-nucleotide polymorphisms may be related to changes in P-glycoprotein function at the blood--brain barrier. As such, genetic variations in ABCB1 might contribute to the progression of amyloid-beta deposition in the brain.
    EJNMMI research. 10/2012; 2(1):57.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability (ID) is an unresolved health care problem with a worldwide prevalence rate of 2-3%. For many years, research into the genetic causes of ID and related disorders has mainly focused on chromosomal abnormalities or X-linked genetic deficits. Only a handful of autosomal genes are known to cause ID. At the same time it has been suggested that at least some cases of ID represent an extreme form of normal intellectual ability and therefore that genes important for intellectual ability in the normal range may also play a role in ID. In this study, we tested whether the autosomal SNAP25 gene, which was previously associated with variation in intellectual ability in the normal range, is also associated with ID. The gene product of SNAP25 is an important presynaptic plasma membrane protein, is known to be involved in regulating neurotransmitter release, and has been linked to memory and learning by its effect on long term potentiation in the hippocampus. Allele frequencies of two genetic variants in SNAP25 previously associated with intellectual ability were compared between a group of 636 ID cases (IQ < 70) and a control group of 361 persons of higher than average intellectual ability. We observed a higher frequency of the putative risk allele of rs363050 (P = 0.02; OR = 1.24) in cases as compared to controls. These results are consistent with a role of SNAP25 in ID, and also support the notion that ID reflects the lower extreme of the quantitative distribution of intellectual ability.
    Genes Brain and Behavior 07/2012; 11(7):767-71. · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sardinia has been used for genetic studies because of its historical isolation, genetic homogeneity and increased prevalence of certain rare diseases. Controversy remains concerning the genetic substructure and the extent of genetic homogeneity, which has implications for the design of genome-wide association studies (GWAS). We revisited this issue by examining the genetic make-up of a sample from North-East Sardinia using a dense set of autosomal, Y chromosome and mitochondrial markers to assess the potential of the sample for GWAS and fine mapping studies. We genotyped individuals for 500K single-nucleotide polymorphisms, Y chromosome markers and sequenced the mitochondrial hypervariable (HVI-HVII) regions. We identified major haplogroups and compared these with other populations. We estimated linkage disequilibrium (LD) and haplotype diversity across autosomal markers, and compared these with other populations. Our results show that within Sardinia there is no major population substructure and thus it can be considered a genetically homogenous population. We did not find substantial differences in the extent of LD in Sardinians compared with other populations. However, we showed that at least 9% of genomic regions in Sardinians differed in LD structure, which is helpful for identifying functional variants using fine mapping. We concluded that Sardinia is a powerful setting for genetic studies including GWAS and other mapping approaches.
    European journal of human genetics: EJHG 02/2012; 20(9):956-64. · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is a psychiatric disorder that is characterized--amongst others--by persistent depressed mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In 2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f.>0.1, r(2)>0.8), we selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped 349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E-7. We imputed, filling in missing genotypes, after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E-6. When we created a haplotype of these SNPs together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E-7 but was not genome wide significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the causal variant is in high LD with rs2715147, rs2715148 and rs2522833.
    PLoS ONE 01/2012; 7(5):e37384. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.
    Nature 11/2011; 479(7374):534-7. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic approaches provide enormous amounts of raw data with regard to genetic variation, the diversity of RNA species, and protein complement. High-throughput (HT) and high-content (HC) cellular screens are ideally suited to contextualize the information gathered from other "omic" approaches into networks and can be used for the identification of therapeutic targets. Current methods used for HT-HC screens are laborious, time-consuming, and prone to human error. The authors thus developed an automated high-throughput system with an integrated fluorescent imager for HC screens called the AI.CELLHOST. The implementation of user-defined culturing and assay plate setup parameters allows parallel operation of multiple screens in diverse mammalian cell types. The authors demonstrate that such a system is able to successfully maintain different cell lines in culture for extended periods of time as well as significantly increasing throughput, accuracy, and reproducibility of HT and HC screens.
    Journal of Biomolecular Screening 07/2011; 16(8):932-9. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benign hereditary chorea (BHC) is a rare autosomal dominant disorder characterized by non-progressive chorea of early onset, without other underlying progressive neurologic dysfunction. Hypothyroidism and pulmonary problems may also be associated. Recently, mutations in the thyroid transcription factor 1 gene (TITF-1), linked to chromosome 14q, have been related to this disorder. We describe the clinical phenotype and response to levodopa treatment in a 6 year-old girl affected with sporadic non-progressive chorea, and a de novo TITF-1 gene mutation, in order to increase understanding of this rare and misdiagnosed disorder.
    Brain & development 05/2011; 34(3):255-7. · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disorder of late onset, which is caused by a CAG repeat expansion in the coding region of the ATXN3 gene. This disease presents clinical heterogeneity, which cannot be completely explained by the size of the repeat tract. MJD presents extrapyramidal motor signs, namely parkinsonism, more frequently than the other subtypes of autosomal dominant cerebellar ataxias. Although parkinsonism seems to segregate within MJD families, only a few MJD patients develop parkinsonian features and, therefore, the clinical and genetic aspects of these rare presentations remain poorly investigated. The main goal of this work was to describe two MJD patients displaying the parkinsonian triad (tremor, bradykinesia and rigidity), namely on what concerns genetic variation in Parkinson's disease (PD) associated loci (PARK2, LRRK2, PINK1, DJ-1, SNCA, MAPT, APOE, and mtDNA tRNA(Gln) T4336C). Patient 1 is a 40 year-old female (onset at 30 years of age), initially with a pure parkinsonian phenotype (similar to the phenotype previously reported for her mother). Patient 2 is a 38 year-old male (onset at 33 years of age), presenting an ataxic phenotype with parkinsonian features (not seen either in other affected siblings or in his father). Both patients presented an expanded ATXN3 allele with 72 CAG repeats. No PD mutations were found in the analyzed loci. However, allelic variants previously associated with PD were observed in DJ-1 and APOE genes, for both patients. The present report adds clinical and genetic information on this particular and rare MJD presentation, and raises the hypothesis that DJ-1 and APOE polymorphisms may confer susceptibility to the parkinsonian phenotype in MJD.
    BMC Neurology 01/2011; 11:131. · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In view of the population-specific heterogeneity in reported genetic risk factors for Parkinson's disease (PD), we conducted a genome-wide association study (GWAS) in a large sample of PD cases and controls from the Netherlands. After quality control (QC), a total of 514,799 SNPs genotyped in 772 PD cases and 2024 controls were included in our analyses. Direct replication of SNPs within SNCA and BST1 confirmed these two genes to be associated with PD in the Netherlands (SNCA, rs2736990: P = 1.63 × 10(-5), OR = 1.325 and BST1, rs12502586: P = 1.63 × 10(-3), OR = 1.337). Within SNCA, two independent signals in two different linkage disequilibrium (LD) blocks in the 3' and 5' ends of the gene were detected. Besides, post-hoc analysis confirmed GAK/DGKQ, HLA and MAPT as PD risk loci among the Dutch (GAK/DGKQ, rs2242235: P = 1.22 × 10(-4), OR = 1.51; HLA, rs4248166: P = 4.39 × 10(-5), OR = 1.36; and MAPT, rs3785880: P = 1.9 × 10(-3), OR = 1.19).
    European journal of human genetics: EJHG 01/2011; 19(6):655-61. · 3.56 Impact Factor

Publication Stats

5k Citations
575.57 Total Impact Points

Institutions

  • 2014
    • Deutsches Zentrum für Neurodegenerative Erkrankungen
      Bonn, North Rhine-Westphalia, Germany
  • 2012
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • Department of Clinical Genetics
      Amsterdam, North Holland, Netherlands
  • 2003–2012
    • VU University Medical Center
      • • Department of Clinical Genetics
      • • Section of Medical Genome Analysis
      Amsterdam, North Holland, Netherlands
    • University of Birmingham
      Birmingham, England, United Kingdom
  • 2007
    • VU University Amsterdam
      Amsterdamo, North Holland, Netherlands
  • 2002–2007
    • Erasmus MC
      • • Department of Neurology
      • • Department of Clinical Genetics
      Rotterdam, South Holland, Netherlands
  • 1999–2007
    • Erasmus Universiteit Rotterdam
      • • Department of Neurology
      • • Department of Clinical Genetics
      Rotterdam, South Holland, Netherlands
    • Karolinska Institutet
      Solna, Stockholm, Sweden
  • 1999–2002
    • Sapienza University of Rome
      • Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science
      Roma, Latium, Italy
  • 1998
    • Mayo Foundation for Medical Education and Research
      Rochester, Michigan, United States