Manuel Talon

Valencian Institute for Agricultural Research, Valenza, Valencia, Spain

Are you Manuel Talon?

Claim your profile

Publications (145)485.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes—a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes—and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.
    Nature Biotechnology 06/2014; · 32.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes—a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes—and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.
    Nature Biotechnology 05/2014; · 32.44 Impact Factor
  • Source
    Laura Naranjo, Manuel Talón, Concha Domingo
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice is considered a short day plant. Originally from tropical regions rice has been progressively adapted to temperate climates and long day conditions in part by modulating its sensitivity to day length. Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1) that code for florigens, are known as major regulatory genes of floral transition in rice. Both Hd3a and RFT1 are regulated by Early heading date 1 (Ehd1) and Days to heading on chromosome 2 (DTH2) while Heading date 1 (Hd1) also governs Hd3a expression. To investigate the mechanism of rice adaptation to temperate climates we have analyzed the natural variation of these five genes in a collection of japonica rice representing the genetic diversity of long day cultivated rice. We have investigated polymorphisms of Hd3a, RFT1, Ehd1, Hd1 and DTH2 in a collection of 57 japonica varieties. Hd3a and RFT1 were highly conserved, displaying one major allele. Expression analysis suggested that RFT1 rather than Hd3a could be the pivotal gene controlling flowering under long day conditions. While few alleles were found in the Ehd1 promoter and DTH2 coding region, a high degree of variation in Hd1, including non-functional alleles, was observed. Correlation analysis between gene expression levels and flowering periods suggested the occurrence of other factors, additionally to Ehd1, affecting RFT1 regulation in long day adapted cultivars. During domestication, rice expansion was accompanied by changes in the regulatory mechanism of flowering. The existence of non-functional Hd1 alleles and the lack of correlation of their presence with flowering times in plants grown under long day conditions, indicate a minor role of this branch in this process and the existence of an alternative regulatory pathway in northern latitudes. Expression analysis data and a high degree of conservation of RFT1 suggested that this gene could be the main factor regulating flowering among japonica cultivars adapted to northern areas. In the absence of inhibition exerted by Hd1 through repression of Hd3a expression, the role of Ehd1 as a regulator of RFT1 and Hd3a appears to be reinforced. Data also indicated the occurrence of additional regulatory factors controlling flowering.
    BMC Genomics 02/2014; 15(1):101. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidization. The study included comparisons of their ploidy, homozygosity, genome integrity, and gene dosage, using chromosome counting, flow cytometry, SSR marker genotyping, and array-Comparative Genomic Hybridization (array-CGH). Chromosome counting and flow cytometry revealed that ESP and FRA were haploid, but ITA was tri-haploid. Homozygous patterns, represented by a single peak (allele), were observed among the three plants at almost all SSR loci distributed across the entire diploid donor genome. Those few loci with extra peaks visualized as output from automated sequencing runs, generally low or ambiguous, might result from amplicons of paralogous members at the locus, non-specific sites, or unexpected recombinant alleles. No new alleles were found, suggesting the genomes remained stable and intact during gametogenesis and regeneration. The integrity of the haploid genome also was supported by array-CGH studies, in which genomic profiles were comparable to the diploid control. The presence of few gene hybridization abnormalities, corroborated by gene dosage measurements, were hypothetically due to the segregation of hemizygous alleles and minor genomic rearrangements occurring during the haploidization procedure. In conclusion, these plants that are valuable genetic and breeding materials contain completely homozygous and essentially intact genomes.
    BMC Plant Biology 09/2013; 13(1):129. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of iron (Fe) deficiency on the low-molecular-weight organic acid (LMWOA) metabolism have been investigated in Carrizo citrange (CC) [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] roots. Major LMWOAs found in roots, xylem sap and root exudates were citrate and malate and their concentrations increased with Fe deficiency. The activities of several enzymes involved in the LMWOA metabolism were also assessed in roots. In the cytosolic fraction, the activities of malate dehydrogenase (cMDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes were 132 and 100% higher in Fe-deficient conditions, whereas the activity of pyruvate kinase was 31% lower and the activity of malic enzyme (ME) did not change. In the mitochondrial fraction, the activities of fumarase, MDH and citrate synthase enzymes were 158, 117 and 53% higher, respectively, in Fe-deficient extracts when compared with Fe-sufficient controls, whereas no significant differences between treatments were found for aconitase (ACO) activity. The expression of their corresponding genes in roots of Fe-deficient plants was higher than that measured in Fe-sufficient controls, except for ACO and ME. Also, dicarboxylate-tricarboxylate carrier (DTC) expression was significantly increased in Fe-deficient roots. In conclusion, Fe deficiency in CC seedlings causes a reprogramming of the carbon metabolism that involves an increase of anaplerotic fixation of carbon via PEPC and MDH activities in the cytosol and a shift of the Krebs cycle in the mitochondria towards a non-cyclic mode, as previously described in herbaceous species. In this scheme, DTC could play an important role shuttling both malate and reducing equivalents between the cytosol and the mitochondria. As a result of this metabolic switch malate and citrate concentrations in roots, xylem sap and root exudates increase.
    Tree Physiology 03/2013; · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance.
    Journal of plant physiology 02/2013; · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abscission consists in the detachment of entire vegetative and reproductive organs due to cell separation processes occurring at the abscission zones (AZs) at specific positions of the plant body. From an evolutionary point of view, abscission is a highly advantageous process resulting into fruit and seed dispersal as well as the shedding of no longer useful organs. In an agricultural context, however, abscission may become a major limiting factor for crop productivity. Domestication of major crops included the selection of plants that did not naturally shed ripe fruits or seeds. The understanding of abscission is of great importance to control seed and fruit production and to improve breeding and harvesting practices. Thus, advances made on model plants and crops are of major importance since they may provide potential candidate genes for further biotechnological applications. Here, we review the current knowledge of the physiological, genetic and genomic aspects related to abscission including the most recently disclosed putative regulators that appear to be implicated in the development and/or activation of the AZs.
    Plant Science 02/2013; 199-200C:48-60. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.
    PLoS ONE 01/2013; 8(11):e80930. · 3.53 Impact Factor
  • Source
    XII International Citrus Congress, Valencia (Spain); 12/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a 'Mediterranean' mandarin x sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. RESULTS: Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between 'Mediterranean' mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. CONCLUSIONS: A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the 'Mediterranean' mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.
    BMC Genomics 11/2012; 13(1):593. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signaling and adaptation to stress. © 2012 Blackwell Publishing Ltd.
    Plant Cell and Environment 10/2012; · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaf abscission is a common response of plants to drought stress. Some species, such as citrus, have evolved a specific behaviour in this respect, keeping their leaves attached to the plant body during water stress until this is released by irrigation or rain. This study successfully reproduced this phenomenon under controlled conditions (24h of water stress followed by 24h of rehydration) and used it to construct a suppression subtractive hybridization cDNA library enriched in genes involved in the early stages of rehydration-promoted leaf abscission after water stress. Sequencing of the library yielded 314 unigenes, which were spotted onto nylon membranes. Membrane hybridization with petiole (Pet)- and laminar abscission zone (LAZ)-enriched RNA samples corresponding to early steps in leaf abscission revealed an almost exclusive preferential gene expression programme in the LAZ. The data identified major processes such as protein metabolism, cell-wall modification, signalling, control of transcription and vesicle production, and transport as the main biological processes activated in LAZs during the early steps of rehydration-promoted leaf abscission after water stress. Based on these findings, a model for the early steps of citrus leaf abscission is proposed. In addition, it is suggested that CitbHLH1, the putative citrus orthologue of Arabidopsis BIGPETAL, may play major roles in the control of abscission-related events in citrus abscission zones.
    Journal of Experimental Botany 10/2012; · 5.79 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: • Premise of the study: Indel markers were developed from BAC-end sequences of Citrus clementina cv. Nules. Transferability and polymorphism were tested in the Citrus genus to estimate the potential of indel markers mined from a single genotype for use in genetic studies. • Methods and Results: Using polyacrylamide gel electrophoresis and DNA silver staining, 89 indel markers were tested for their transferability and polymorphism. Thirty-eight markers were selected. Heterozygosity in C. clementina cv. Nules was confirmed for 33 of these indel pairs. A preliminary diversity study using a capillary electrophoresis fragment analyzer was conducted with 21 indels using 45 accessions representing Citrus genus diversity. Intraspecific and interspecific polymorphisms were observed. • Conclusions: These results indicate the utility of indel markers developed from sequence data of a single genotype of interspecific origin. In Citrus, these markers will be useful for genetic mapping, germplasm characterization, and phylogenetic assignment of DNA fragments.
    American Journal of Botany 07/2012; 99(7):e268-73. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Application of 1-naphthaleneacetic acid (NAA) or 1-aminocyclopropane-1-carboxilic acid (ACC) to maize roots growing in hydroponic solution inhibited root elongation, and increased radial growth, but the responses to those treatments differed in degree. Auxin was more effective than ACC as an elongation inhibitor and root swelling promoter. Whereas NAA fully inhibited elongation and maintained swelling over 48 h, ACC inhibited elongation partially (50%) and only promoted swelling for 24 h. It is well-known that auxin, like ACC, promotes ethylene production, but similar levels of ethylene production reached by means of NAA or ACC treatments did not elicit the same response, the response being always stronger to NAA than to ACC. These results suggest that the effect of auxin on root growth is not mediated by ethylene. Elongation and swelling of roots appear to be inversely related: usually a reduction in elongation was accompanied by corresponding swelling. However, these two processes showed different sensitivities to growth regulators. After 24 h treatment with 0.5 μM NAA or 5 μM ACC, root elongation was inhibited by 90% and 53% respectively, but the same treatments promoted swelling by 187% and 140% respectively. Furthermore, 1 μM ACC was shown to promote inhibition of root elongation with-out affecting swelling. The ethylene antagonist STS (silver thiosulfate) did not affect elongation in control or NAA-treated roots, but increased ethylene production and swelling. These results indicate that longitudinal and radi-al expansion could be independently controlled. K Ke ey y w wo or rd ds s: : Maize, root, NAA, ACC, auxin, ethylene, STS, root swelling, root elongation.
    Acta biologica Cracoviensia. Series botanica 06/2012; 54/1:1-8. · 0.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5' region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3' region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na⁺ concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na⁺ and K⁺, even at high external Na⁺ concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K⁺ uptake under saline conditions.
    The Plant Journal 04/2012; 71(5):750-62. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition.
    BMC Plant Biology 02/2012; 12(20). · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs. The primary goals of this study were: (i) to estimate the transferability within the genus Citrus of SNPs discovered from Clementine BACend sequencing (BES), (ii) to estimate bias associated with the very narrow discovery panel, and (iii) to evaluate the usefulness of the Clementine-derived SNP markers for diversity analysis and comparative mapping studies between the different cultivated Citrus species. Fifty-four accessions covering the main Citrus species and 52 interspecific hybrids between pummelo and Clementine were genotyped on a GoldenGate array platform using 1,457 SNPs mined from Clementine BES and 37 SNPs identified between and within C. maxima, C. medica, C. reticulata and C. micrantha. Consistent results were obtained from 622 SNP loci. Of these markers, 116 displayed incomplete transferability primarily in C. medica, C. maxima and wild Citrus species. The two primary biases associated with the SNP mining in Clementine were an overestimation of the C. reticulata diversity and an underestimation of the interspecific differentiation. However, the genetic stratification of the gene pool was high, with very frequent significant linkage disequilibrium. Furthermore, the shared intraspecific polymorphism and accession heterozygosity were generally enough to perform interspecific comparative genetic mapping. A set of 622 SNP markers providing consistent results was selected. Of the markers mined from Clementine, 80.5% were successfully transferred to the whole Citrus gene pool. Despite the ascertainment biases in relation to the Clementine origin, the SNP data confirm the important stratification of the gene pools around C. maxima, C. medica and C. reticulata as well as previous hypothesis on the origin of secondary species. The implemented SNP marker set will be very useful for comparative genetic mapping in Citrus and genetic association in C. reticulata.
    BMC Genomics 01/2012; 13:13. · 4.40 Impact Factor
  • XII International Citrus Congress - Book of abstracts. Valencia, Spain, 18-23 novembre.; 01/2012
  • Source
    BMC Genomics 01/2012; · 4.40 Impact Factor

Publication Stats

5k Citations
485.16 Total Impact Points

Institutions

  • 1990–2014
    • Valencian Institute for Agricultural Research
      Valenza, Valencia, Spain
  • 2012
    • IVIA
      Ceará, Ceará, Brazil
    • French National Centre for Scientific Research
      • Unité de Biochimie et Physiologie Moléculaire des Plantes (B&PMP)
      Montpellier, Languedoc-Roussillon, France
  • 2008–2012
    • Cirad - La recherche agronomique pour le développement
      • Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
      Montpelhièr, Languedoc-Roussillon, France
  • 2010
    • University of Bristol
      Bristol, England, United Kingdom
  • 2002–2009
    • Universitat Jaume I
      • Departamento de Ciencias Agrarias y del Medio Natural
      Castelló de la Plana, Valencia, Spain
  • 1990–2007
    • Michigan State University
      • MSU-DOE Plant Research Laboratory
      East Lansing, Michigan, United States
  • 2006
    • Polytechnical University of Valencia
      • Institute for the Implementation of Advanced Information and Communications Technologies (ITACA)
      Valencia, Valencia, Spain