Enza Palazzo

Second University of Naples, Caserta, Campania, Italy

Are you Enza Palazzo?

Claim your profile

Publications (67)239.18 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergen exposure may induce changes in the brainstem secondary neurons, with neural sensitization of the nucleus solitary tract (NTS), which in turn can be considered one of the causes of the airway hyperresponsiveness, a characteristic feature of asthma. We evaluated neurofunctional, morphological, and biochemical changes in the NTS of naive or sensitized rats. To evaluate the cell firing activity of NTS, in vivo electrophysiological experiments were performed before and after capsaicin challenge in sensitized or naive rats. Immunohistochemical studies, endocannabinoid, and palmitoylethanolamide quantification in the NTS were also performed. This study provides evidence that allergen sensitization in the NTS induced: (1) increase in the neural firing response to intratracheal capsaicin application, (2) increase of endocannabinoid anandamide and palmitoylethanolamide, a reduction of 2-arachidonoylglycerol levels in the NTS, (3) glial cell activation, and (4) prevention by a Group III metabotropic glutamate receptor activation of neural firing response to intratracheal application of capsaicin in both nave and sensitized rats. Therefore, normalization of ovalbumin-induced NTS neural sensitization could open up the prospect of new treatments based on the recovery of specific brain nuclei function and for extensive studies on acute or long-term efficacy of selective mGlu ligand, in models of bronchial hyperreactivity.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.
    Amino Acids 03/2014; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate is the main excitatory neurotransmitter in the central nervous system, controlling the majority of synapses. Apart from neurodegenerative diseases, growing evidence suggests that glutamate is involved in psychiatric and neurological disorders, including pain. Glutamate signaling is mediated via ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). So far, drugs acting via modulation of glutamatergic system are few in number, and all are associated with iGluRs and important side effects. The glutamatergic system may be finely modulated by mGluRs. Signaling via these receptors is slower and longer-lasting, and permits fine-tuning of glutamate transmission. There have been eight mGluRs cloned to date (mGluR1-mGluR8), and these are further divided into three groups on the basis of sequence homology, pharmacological profile, and second messenger signaling. The pattern of expression of mGluRs along the pain neuraxis makes them suitable substrates for the design of novel analgesics. This review will focus on the supraspinal mGluRs, whose pharmacological manipulation generates a variety of effects, which depend on the synaptic location, the cell type on which they are located, and the expression in particular pain modulation areas, such as the periaqueductal gray, which plays a major role in the descending modulation of pain, and the central nucleus of the amygdala, which is an important center for the processing of emotional information associated with pain. A particular emphasis will also be given to the novel selective mGluR subtype ligands, as well as positive and negative allosteric modulators, which have permitted discrimination of the individual roles of the different mGluR subtypes, and subtle modulation of central nervous system functioning and related disorders.
    European Journal of Neuroscience 02/2014; 39(3):444-54. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current study has investigated the role of the metabotropic glutamate receptor subtype 8 (mGluR8) in the dorsal striatum (DS) in modulating thermonociception and rostral ventromedial medulla (RVM) ON and OFF cell activities in conditions of neuropathic pain induced by the spare nerve injury (SNI) of the sciatic nerve in rats. The role of DS mGluR8 on mechanical allodynia was also investigated. Intra-DS (S)-3,4-DCPG, a selective mGluR8 agonist, did not modify the activity of the ON and OFF cells in sham rats. In SNI rats, which showed a reduction of the mechanical withdrawal threshold, intra-DS microinjection of (S)-3,4-DCPG inhibited the ongoing and tail flick-evoked activity of the ON cells while increased the activity of the OFF cells. AZ12216052, a selective mGluR8 positive allosteric modulator (PAM), behaves as (S)-3,4-DCPG in increasing tail flick latency, the OFF cell activity and decreasing the ON cell activity in SNI rats only, but was less potent. VU0155041, a selective mGluR4 PAM was ineffective in changing thermal nociception and ON and OFF cell activity in both shams and SNI rats. (S)-3,4-DCPG did not change mechanical withdrawal threshold in sham rats while increased it in SNI rats. Furthermore, a decreased level of mGluR8 gene and immunoreactivity, expressed on GABAergic terminals, associated with a protein increase was found in the DS of SNI rats, These results suggest that the stimulation of mGluR8 inhibits thermoceptive responses and mechanical allodynia. These effects were associated with an inhibition of the ON cells and the stimulation of OFF cells within RVM.
    Journal of Neurophysiology 12/2013; · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabotropic glutamate receptor 7 (mGluR7) negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), was locally microinjected into the ventrolateral periaqueductal gray (VL PAG) and the effect on pain responses in formalin and spare nerve injury (SNI) -induced neuropathic pain models was monitored in the rat. The activity of rostral ventromedial medulla (RVM) "pronociceptive" ON and "antinociceptive" OFF cells was also evaluated. Intra--VL PAG MMPIP blocked the first and second phase of nocifensive behaviour in the formalin pain model. MMPIP increased the tail flick latency and simultaneously increased the activity of the OFF cells while inhibiting that of ON cells in rats with SNI of the sciatic nerve. MMPIP failed to modify nociceptive responses and associated RVM ON and OFF cell activity in sham rats. An increase in mGluR7 gene, protein and staining, the latter being associated with vesicular glutamate transporter-positive profiles, has been found in the VL PAG in SNI rats. Blockade of mGluR7 within the VL PAG has an antinociceptive effect in formalin and neuropathic pain models. VL PAG mGluR7 blockade offers a target for dis-inhibiting the VL PAG-RVM pathway and silencing pain in inflammatory and neuropathic pain models.
    Molecular Pain 09/2013; 9(1):44. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transient receptor potential (TRP) superfamily consists of a large number of cation channels permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be divided into seven subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPN (no mechanopotential, NOMP) and the TRPA (ankyrin) groups. TRP channels are widely expressed in several cell types in every tissue and play a critical role in the regulation of various cell functions. Altogether these channels function as sensory transducers and detect chemical, thermal and mechanical stimuli. Endogenous substances acting on TRP channels can be released during the early stage of some pathological conditions. These substances can affect TRP channel functions and lead to the progression of diseases such as inflammation and chronic pain. For example, endogenous lipids, such as unsaturated fatty acids and their cyclooxygenase, lipoxygenase or epoxygenase related metabolites, were shown to modulate TRP channel activity by direct binding. Other lipidergic ligands include isoprene derivatives (e.g. diacylglycerol, lysophospholipids and resolvine) which play diverse activity on different TRP channels. This review focuses on lipidergic mediators which affect TRP channel activity. Opportunities to exploit TRP channels for novel therapeutic strategies will be discussed.
    Current topics in medicinal chemistry 02/2013; · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Salvinorin A (SA), the main active component of Salvia Divinorum, is a non-nitrogenous kappa opioid receptor (KOR) agonist. It has been shown to reduce acute pain and to exert potent antinflammatory effects. This study assesses the effects and the mode of action of SA on formalin-induced persistent pain in mice. Specifically, the SA effects on long-term behavioural dysfuctions and changes in neuronal activity occurring at spinal level, after single peripheral formalin injection, have been investigated. Moreover, the involvement of microglial and glial cells in formalin-induced chronic pain condition and in SA-mediated effects has been evaluated. RESULTS: Formalin induced a significant decrease of mechanical withdrawal threshold at the injected and contralateral paw as well as an increase in the duration and frequency, and a rapid decrease in the onset of evoked activity of the nociceptive neurons 7 days after formalin injection. SA daily treatment significantly reduced mechanical allodynia in KOR and cannabinoid receptor 1 (CB1R) sensitive manner. SA treatment also normalized the spinal evoked activity. SA significantly reduced the formalin-mediated microglia and astrocytes activation and modulated pro and anti-inflammatory mediators in the spinal cord. CONCLUSION: SA is effective in reducing formalin-induced mechanical allodynia and spinal neuronal hyperactivity. Our findings suggest that SA reduces glial activation and contributes in the establishment of dysfunctions associated with chronic pain with mechanisms involving KOR and CB1R. SA may provide a new lead compound for developing anti-allodynic agents via KOR and CB1R activation.
    Molecular Pain 08/2012; 8(1):60. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plastic changes in the amygdala and limbic cortex networks have been widely shown in chronic pain. We have here investigated the role of group I metabotropic glutamate receptors (mGluRs) in the basolateral amygdala (BLA) pre-infra-limbic (PL-IL) divisions of the medial prefrontal cortex (mPFC) neuron connections after carrageenan-induced inflammatory pain in the rat. Intra-plantar injection of carrageenan decreased either spontaneous or mechanically/electrically evoked activity of PL cortex pyramidal neurons which responded with excitation in a way prevented by CPCOOEt, a selective mGluR1 antagonist, though not by MPEP, a selective mGluR5 antagonist. Accordingly, intra-BLA microinjection of DHPG, a group I mGluR agonist, caused PL cortex neuron activity depression, antagonized by CPCCOEt. CPCOOEt, but not MPEP, reduced also carrageenan-induced mechanical allodynia. The PL cortex cell deactivation in inflammatory pain condition was associated with increased GABA (conversely glutamate was decreased) in the PL/IL cortex. The local application of bicuculline, a GABA(A) receptor selective antagonist, reduced mechanical allodynia. An over-expression of mGluR1, but not mGluR5, have been observed in the PL-IL cortex after inflammatory pain suggesting an increased mGluR1-dependent cross-talk among BLA and IL-PL cortex neurons in inflammatory pain conditions. This article is part of a Special Issue entitled 'mGluR'.
    Neuropharmacology 07/2012; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study analyzed the effect of intra-ventrolateral periaqueductal grey (VL PAG) cannabinoid receptor (CB) stimulation on pain responses and rostral ventromedial medulla (RVM) neural activity in the chronic constriction injury (CCI) model of neuropathic pain in rats. Interaction between CB1 and metabotropic glutamate 1 and 5 (mGlu(1)/mGlu(5)) receptors was also investigated together with the expression of the CB1 receptor associated Gαi3 and cannabinoid receptor interacting 1a (CRIP 1a) proteins and the endocannabinoid synthesising and hydrolysing enzymes. In rats not subjected to CCI-induced pain, intra-VL PAG (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212-2) (2-4-8 nmol), a CB receptor agonist, increased the tail flick latency and changed the ongoing activity of RVM OFF and the tail flick-related activity of the ON and OFF cells, accordingly. These effects were prevented by SR141716A and MPEP, selective CB(1) and mGlu(5) receptor antagonists, respectively, though not by CPCCOEt, a selective mGlu(1) receptor antagonist. A higher dose up to 16 nmol of WIN 55,212-2 was necessary to increase tail flick latency and change ON and OFF cell activity in CCI rats. Consistently, CCI rats showed a decrease in the expression of CB(1) receptors, NAPE-PLD, Gαi3 and CRIP 1a proteins;the expression of diacylglycerol lipase A (DAGLA) was increased while fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL) did not change. As in control rats, MPEP and SR141716A also blocked WIN 55,212-2- induced effects in CCI rats. These data demonstrate a down regulation of the endocannabinoid system and a functional interaction between mGlu(5) and CB(1) receptors for cannabinoid-mediated effect in the PAG-RVM pain circuitry in neuropathic pain inflicted rats.
    CNS & neurological disorders drug targets 04/2012; 11(2):148-61. · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α (PPAR-α) ligand, exerts antinociceptive and anti-inflammatory effects. PEA (3 and 6 nmol) was microinjected in the ventrolateral periaqueductal grey (VL PAG) of male rats and effects on nociceptive responses and ongoing and tail flick-related activities of rostral ventromedial medulla (RVM) ON and OFF cells were recorded. Intra-PAG microinjection of PEA reduced the ongoing activity of ON and OFF cells and produced an increase in the latency of the nociceptive reaction. These effects were prevented by a selective PPAR-α antagonist, GW6471 and by a large-conductance Ca(2+)-activated K(+) channel inhibitor, charybdotoxin. Cannabinoid 1 (CB(1)) receptor blockade by AM251 increased the PEA-induced effect both on the ongoing activity of the ON cell and on the latency to tail flick without affecting the effect of PEA on the OFF cell. Conversely, a transient receptor potential vanilloid type 1 (TRPV(1)) blocker, I-RTX, had no effect on the ON cell activity and tail flick latency, whereas it blocked the PEA-induced decrease in ongoing activity of the OFF cell. PEA decreased the burst and increased the latency of tail flick-evoked onset of ON cell activity in a manner antagonised by GW6471 and charybdotoxin. AM251 and I-RTX, instead, enhanced these latter effects. In conclusion, intra-VL PAG PEA induces antinociceptive effects associated with a decrease in RVM ON and OFF cell activities. PPAR-α receptors mediate, and CB(1) and TRPV(1) receptors antagonise, PEA-induced effects within the PAG-RVM circuitry.
    European journal of pharmacology 12/2011; 676(1-3):41-50. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1(-/-) mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1(-/-) mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB(1) agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain.
    Cerebral Cortex 12/2011; 22(11):2495-518. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated cation channel, is a polymodal nocitransducer widely expressed within pain transmitting/modulating areas of the peripheral and central nervous system. TRPV1 is both activated and sensitized by inflammatory endogenous mediators during inflammatory pain conditions and appears to be up regulated in neuropathic pain conditions. Owing to its role as pain integrator, its widespread expression in pain neuraxis and its involvement in pain development TRPV1 offers an exciting opportunity for therapeutic interventions in pain management. In particular, its supraspinal expression within the antinociceptive descending pathway, which includes periaqueductal grey (PAG) and rostral ventromedial medulla (RVM), represents an endogenous switch for extinguishing pain in pathological conditions.
    Current Opinion in Pharmacology 11/2011; 12(1):9-17. · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the expression of prostaglandin EP1 receptor within the ventrolateral periaqueductal grey (VL PAG). The role of VL PAG EP1 receptor in controlling thermonociception and rostral ventromedial medulla (RVM) activity in healthy and neuropathic rats was also examined. EP1 receptor was indeed found to be expressed within the VL PAG and co-localized with vesicular GABA transporter. Intra-VL PAG microinjection of ONO-DI-004, a selective EP1 receptor agonist, dose-dependently reduced tail flick latency as well as respectively increasing and decreasing the spontaneous activity of ON and OFF cells. Furthermore, it increased the ON cell burst and OFF cell pause. Intra-VL PAG prostaglandin E2 (PGE2) behaved similarly to ONO-DI-004. The effects of ONO-DI-004 and PGE2 were antagonized by intra-VL PAG L335677, a selective EP1 receptor antagonist. L335677 dose-dependently increased the tail flick latency and ongoing activity of the OFF cells, while reducing the ongoing ON cell activity. It also decreased the ON cell burst and OFF cell pause. In neuropathic rats using spare nerve injury (SNI) of the sciatic nerve model, EP1 receptor expression decreased in the VL PAG. However, ONO-DI-004 and L335677 were able to alter pain responses and ON and OFF cell activity, as they did in healthy animals. Collectively, these data show that within the VL PAG, EP1 receptor has a facilitatory effect on the nociceptive response and consistently affects RVM neuron activity. Thus, the blockade of EP1 receptor in the VL PAG leads to antinociception in neuropathic pain conditions, despite its down-regulation. The expression of EP1 receptor on GABAergic neurons is consistent with an EP1 receptor blockade-induced disinhibition of the antinociceptive descending pathway at VL PAG level.
    Molecular Pain 10/2011; 7:82. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pain-related plasticity in the laterocapsular division of the central nucleus of the amygdala (CeLC) depends on the activation of group I metabotropic glutamate receptors (mGluRs) whereas groups II and III mGluRs generally serve inhibitory functions. Recent evidence suggests differential roles of group III subtypes mGluR7 (pain enhancing) and mGluR8 (pain inhibiting) in the amygdala (Palazzo et al., 2008). Here we addressed the underlying synaptic mechanisms of mGluR7 and mGluR8 function in the CeLC under normal conditions and in an arthritis pain model. Using patch-clamp recordings in rat brain slices, we measured monosynaptic excitatory post-synaptic currents (EPSCs), mono- and polysynaptic inhibitory synaptic currents (IPSCs), and synaptically evoked action potentials (E-S coupling) in CeLC neurons. Synaptic responses were evoked by electrical stimulation in the basolateral amygdala (BLA). A selective mGluR8 agonist (DCPG) inhibited evoked EPSCs and synaptic spiking more potently in slices from arthritic rats than in slices from normal rats. In contrast, a selective mGluR7 agonist (AMN082) increased EPSCs and E-S coupling in slices from normal rats but not in the pain model. The effects of AMN082 and DCPG were blocked by a group III antagonist (MAP4). AMN082 increased frequency, but not amplitude, of spontaneous EPSCs but had no effect on miniature EPSCs (in TTX). DCPG decreased frequency, but not amplitude, of spontaneous and miniature EPSCs. The data suggest that mGluR8 acts presynaptically to inhibit excitatory transmission whereas the facilitatory effects of mGluR7 are indirect through action potential-dependent network action. AMN082 decreased evoked IPSCs and frequency, but not amplitude, of spontaneous and miniature IPSCs in slices from normal rats. DCPG had no effect on inhibitory transmission. The results suggest that presynaptic mGluR7 inhibits inhibitory synaptic transmission to gate glutamatergic transmission to CeLC neurons under normal conditions but not in pain. Presynaptic mGluR8 inhibits pain-related enhanced excitatory transmission in the CeLC.
    Neuropharmacology 08/2011; 61(8):1334-44. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The amygdala is a crucial area in controlling the threshold of pain and its emotional component. The present study has evaluated the effect of a metabotropic glutamate 8 receptor (mGluR8) stimulation in the central nucleus of the amygdala (CeA) on the thermoceptive threshold and on CeA serotonin (5-HT), glutamate (Glu), and GABA release in normal and carrageenan-induced inflammatory pain conditions in rats. Furthermore, the activity of rostral ventromedial medulla (RVM) putative "pronociceptive" ON and "antinociceptive" OFF cells has been evaluated. (S)-3,4-Dicarboxyphenylglycine [(S)-3,4-DCPG], a selective mGluR8 agonist, administered into the CeA, did not change 5-HT, Glu, and GABA release, or the thermoceptive threshold, nor did it modify the activity of ON and OFF cells of the RVM in normal animals. In rats treated with carrageenan, intra-CeA (S)-3,4-DCPG perfusion produced antinociception, and increased 5-HT and Glu, whereas it decreased GABA release. Intra-CeA (S)-3,4-DCPG inhibited ON and increased OFF cell activities. Furthermore, an increase in mGluR8 gene, protein, and staining, the latter being associated with vesicular GABA transporter-positive profiles, has been found in the CeA after carrageenan-induced inflammatory pain. These results show that stimulation of mGluR8, which was overexpressed within the CeA in inflammatory pain conditions, inhibits nociceptive behavior. Such an effect is associated with an increase in 5-HT and Glu release, a decrease in GABA, and the inhibition of ON- and the stimulation of OFF-cell activities within RVM.
    Journal of Neuroscience 03/2011; 31(12):4687-97. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study has investigated whether the galactosyl ester prodrug of N(ω)-nitro-L-arginine (NAGAL), shows enhanced analgesic efficacy in healthy mice and in models of visceral and neuropathic pain: the writhing test and the spared nerve injury (SNI), respectively. NAGAL was compared to methyl ester pro-drug of N(ω)-nitro-l-arginine (L-NAME), a widely exploited non-specific nitric oxide synthase (NOS) inhibitor, for analgesic potential. The writhing test revealed that the ED(50) value, along with the 95% confidence limit (CL) was 3.82 (1.77-6.04) mg/kg for NAGAL and, 36.75 (20.07-68.37) mg/kg for L-NAME. Notably, NAGAL elicited a greater anti-allodynic effect than L-NAME did in neuropathic mice. Biomolecular and morphological studies revealed that spared nerve injury increased the expressions of pro-inflammatory enzymes (caspase-1) and two glial cell biomarkers: integrin alpha M (ITGAM) and glial fibrillary acidic protein (GFAP) in the spinal cord. Finally, GLUT-3, an isoform of the hexose transporters capable to bind NAGAL and inducible NOS (iNOS), were found to be over-expressed in the activated astrocytes of the spinal cord of neuropathic mice. NAGAL administration normalized expression levels of these biomarkers. NAGAL showed a greater efficacy in inhibiting visceral pain and allodynia than L-NAME possibly by a greater cell permeation through the hexose transporter which is highly over-expressed by activated glia.
    European journal of pharmacology 02/2011; 656(1-3):52-62. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats. The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.
    Molecular Pain 01/2011; 7:7. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to obtain evidences of a possible analgesic role for palmitoylethanolamide (PEA) in chronic granulomatous inflammation sustained by mast cell (MC) activation in rats at 96 hours. PEA (200-400-800 μg/mL), locally administered at time 0, reduced in a concentration-dependent manner the expression and release of NGF in comparison with saline-treated controls. PEA prevented nerve formation and sprouting, as shown by histological analysis, reduced mechanical allodynia, evaluated by Von Frey filaments, and inhibited dorsal root ganglia activation. These results were supported by the evidence that MCs in granuloma were mainly degranulated and closely localized near nerve fibres and PEA significantly reduced MC degranulation and nerves fibre formation. These findings are the first evidence that PEA, by the modulation of MC activation, controls pain perception in an animal model of chronic inflammation, suggesting its potential use for the treatment of all those painful conditions in which MC activation is an initial key step.
    Molecular Pain 01/2011; 7:3. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes three cases of Datura stramonium intake on two nonconsecutive days. In the first case, the patient took a small amount of D. stramonium seeds without showing any symptoms of intoxication. The other two patients had taken a considerable amount of seeds and reported a sudden surge in strength and energy, with some aggressive compulsion towards their peers. They showed delirium as well as confusion and disorientation. The absence of any specific legislation makes D. stramonium a tempting alternative to other psychoactive substances. Thus, it is extremely important to be able to recognize its symptoms so as to be able to diagnose any signs of intoxication properly.
    Journal of psychoactive drugs 12/2010; 42(4):507-12. · 1.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception. Electrical activity of ON and OFF neurons of the rostral ventromedial medulla in anaesthetized rats was recorded extracellularly and tail flick latencies to thermal stimuli were measured. CBD or CBC along with various antagonists were injected into the ventrolateral periaqueductal grey. Cannabidiol and CBC dose-dependently reduced the ongoing activity of ON and OFF neurons in anaesthetized rats, whilst inducing antinociceptive responses in the tail flick-test. These effects were maximal with 3 nmol CBD and 6 nmol CBC, and were antagonized by selective antagonists of cannabinoid CB(1) adenosine A(1) and TRPA1, but not of TRPV1, receptors. Both CBC and CBD also significantly elevated endocannabinoid levels in the ventrolateral periaqueductal grey. A specific agonist at TRPA1 channels and a synthetic inhibitor of endocannabinoid cellular reuptake exerted effects similar to those of CBC and CBD. CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control. These compounds might represent useful therapeutic agents with multiple mechanisms of action.
    British Journal of Pharmacology 10/2010; 162(3):584-96. · 5.07 Impact Factor

Publication Stats

1k Citations
239.18 Total Impact Points


  • 2001–2014
    • Second University of Naples
      • Faculty of Medicine and Surgery
      Caserta, Campania, Italy
  • 2010
    • Charles University in Prague
      • 3. lékařská fakulta
      Praha, Hlavni mesto Praha, Czech Republic
  • 2009
    • University of Aberdeen
      • Institute of Medical Sciences
      Aberdeen, SCT, United Kingdom
  • 2008
    • University of Texas Medical Branch at Galveston
      • Department of Neuroscience and Cell Biology
      Galveston, TX, United States
    • National Research Council
      • Institute of Biomolecular Chemistry ICB
      Roma, Latium, Italy
  • 1998–2004
    • University of Naples Federico II
      • Department of Pharmacy
      Portici, Campania, Italy