Kohsuke Gonda

Tohoku University, Sendai, Kagoshima, Japan

Are you Kohsuke Gonda?

Claim your profile

Publications (32)82.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This work performed X-ray imaging of mouse by using aqueous colloid solution of AgI nanoparticles coated with silica (AgI/SiO2) and then surface-modified with poly(ethylene glycol) (PEG) (AgI/SiO2/PEG). A colloid solution of AgI nanoparticles was prepared by mixing silver perchlorate and potassium iodide in water. The AgI nanoparticles were surface-modified with 3-mercaptopropyltrimethoxysilane and then were silica-coated by a sol-gel reaction between tetraethylorthosilicate and H2O catalyzed with NaOH in ethanol. The AgI/SiO2 particle surface was modified with PEG by using methoxy PEG silane . The AgI/SiO2/PEG colloid solution revealed a computed tomography value as high as 1343.6 HU at an iodine concentration of 0.1 M, which was higher than a commercial X-ray contrast agent with the same iodine concentration. Tissues of mouse could be imaged by injecting the concentrated colloid solution into them.
    ISRN Nanomaterials. 07/2013; 2013.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying the cellular entry of the HIV-1-Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent-TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon crosslinking of heparan-sulfate proteoglycans (HSPGs). The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic-internalization. However, bivalent-TatP did not sufficiently promote either cell-surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell-entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo-delivery nanomachines.
    Molecular and cellular biology 06/2013; · 6.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A preparation method for Gd-ethylenediaminetetraacetic acid disodium salt dihydrate (ETDA) complex-immobilized silica particles (Gd-EDTA/SiO2) is proposed. Preparation of spherical silica particles was performed by a sol-gel method at 35°C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol, which produced silica particles with an average size of nm. Immobilization of Gd-EDTA on the silica particles was conducted at 35°C by introducing amino groups on the silica particles with (3-aminopropyl)trimethoxysilane at pH 3 (NH2/SiO2) and then making Gd-EDTA act on the NH2/SiO2 particles at pH 5. The as-prepared Gd-EDTA/SiO2 particle colloid solution was concentrated up to a Gd concentration of 0.347 mM by centrifugation. The sphere structure of Gd-EDTA/SiO2 particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated Gd-EDTA/SiO2 colloid solution revealed good MRI properties. A relaxivity value for T1-weighted imaging was as high as 5.15 mM−1 s−1, that was comparable to that for a commercial Gd complex contrast agent.
    ISRN Nanotechnology. 04/2013; 2013.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A preparation method for gadolinium compound (GdC) nanoparticles coated with silica () is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at using M , 0.5 M urea and M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as nm, which were colloidally stable, were prepared at an EDTA concentration of M. Silica-coating of the GdC nanoparticles was performed by a Stber method at using M tetraethylorthosilicate (TEOS), 11 M and M NaOH in ethanol in the presence of M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of particles with an average size of nm at a TEOS concentration of M. The gadolinium (Gd) concentration of M in the as-prepared particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.
    Advances in nano research. 01/2013; 1(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a method for producing silica particles containing multiple quantum dots (QD/SiO2), a method for surface-modifying the particles with poly(ethylene glycol) (QD/SiO2/PEG), and an in vivo fluorescence imaging technique using colloid solution of the QD/SiO2/PEG particles. The QDs used were ZnS-coated CdSexTe1−x nanoparticles surface-modified with carboxyl groups, and had an average size of 10.3 ± 2.1 nm. The QD/SiO2 particles were fabricated by performing sol–gel reaction of tetraethyl orthosilicate using NaOH as a catalyst in the presence of the QDs. The produced particles formed core–shell structure composed of multiple QDs and silica shell, and had an average size of 50.2 ± 17.9 nm. Surface-modification of the QD/SiO2 particles with PEG, or PEGylation of the particle surface, was performed by using methoxy polyethylene glycol silane. Fluorescence of QD colloid solution was not quenched even through the silica-coating and the PEGylation. Tissues of a mouse could be imaged by injecting the concentrated colloid solution into it and measuring fluorescence intensity emitted from the tissues.
    Journal of Sol-Gel Science and Technology 01/2013; 66(1). · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3'-diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature and substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues sections to quantitatively examine the two methods. The results demonstrated that our nanoparticle staining analyzed a wide range of ER expression levels with higher accuracy and quantitative sensitivity than DAB staining. This enhancement in the diagnostic accuracy and sensitivity for ERs using our immunostaining method will improve the prediction of responses to therapies that target ERs and progesterone receptors that are induced by a downstream ER signal.
    Biochemical and Biophysical Research Communications 08/2012; 426(3):409-14. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multilayered, core/shell nanoprobes (MQQ-probe) based on magnetic nanoparticles (MNPs) and quantum dots (QDs) have been successfully developed for multimodality tumor imaging. This MQQ-probe contains Fe(3)O(4) MNPs, visible-fluorescent QDs (600 nm emission) and near infrared-fluorescent QDs (780 nm emission) in multiple silica layers. The fabrication of the MQQ-probe involves the synthesis of a primer Fe(3)O(4) MNPs/SiO(2) core by a reverse microemulsion method. The MQQ-probe can be used both as a fluorescent probe and a contrast reagent of magnetic resonance imaging. For breast cancer tumor imaging, anti-HER2 (human epidermal growth factor receptor 2) antibody was conjugated to the surface of the MQQ-probe. The specific binding of the antibody conjugated MQQ-probe to the surface of human breast cancer cells (KPL-4) was confirmed by fluorescence microscopy and fluorescence-activated cell sorting analysis in vitro. Due to the high tissue permeability of near-infrared (NIR) light, NIR fluorescence imaging of the tumor mice (KPL-4 cells transplanted) was conducted by using the anti-HER2 antibody conjugated MQQ-probe. In vivo multimodality images of breast tumors were successfully taken by NIR fluorescence and T(2)-weighted magnetic resonance. Antibody conjugated MQQ-probes have great potential to use for multimodality imaging of cancer tumors in vitro and in vivo.
    Biomaterials 08/2012; 33(33):8486-94. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methods for high concentration silica-coated silver iodide (AgI/SiO2) particles, which could be practically used as X-ray contrast agent, were examined. The first was a single-step method, which was to prepare AgI nanoparticles at an AgI concentration of 5 x 10(-3) M and coat the AgI nanoparticles with silica shell by a Stöber method. The second was a multiple-step method, which was to repeat a step for preparing a AgI/SiO2 particle colloid solution with 10(-3) M AgI 5 times for adjusting a final AgI concentration to 5 x 10(-3) M. In the two methods, dominant particle aggregation took place, though core-shell particles were also produced. The third was a salting-out method, which was to salt out AgI/SiO2 particles in their colloid solution prepared at an AgI concentration of 10(-3) M, remove supernatant by decantation, and redisperse the particles in a fresh solvent. Consequently, AgI/SiO2 particles with an AgI concentration as high as 0.05 M were successfully prepared with the salting-out method, and their core-shell structure was not damaged during the salting-out.
    Journal of Nanoscience and Nanotechnology 08/2012; 12(8):6741-5. · 1.15 Impact Factor
  • Journal of Materials Science 02/2012; 47(4):1852-1859. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucociliary clearance on the surface of the tracheal lumen is an important component of lung defense against dust mites and viruses. However, the axonemal structure that achieves effective ciliary motion, and the mechanisms by which discretely distributed ciliary cells generate directional flow are unknown. In this study, we examined individual ciliary motion with 7- to 9-nm spatial precision by labeling the ciliary tip with quantum dots and detected an asymmetric beating pattern. Cryo-electron tomography revealed that the densities of two inner dynein arms were missing from at least 2 doublet microtubules in the axonemal structure. Although the flow directions generated by individual ciliated cells were unsteady and diverse, the time- and space-averaged velocity field was found to be directional. These results indicate that the asymmetric ciliary motion is driven by the asymmetric axonemal structure, and it generates overall directional flow from the lungs to the oropharynx on sparsely distributed ciliated cells. FROM THE CLINICAL EDITOR: The authors of this study utilized quantum dots in determining the kinetics of ciliary motion in mouse respiratory cilia with 7- to 9-nm spatial precision.
    Nanomedicine: nanotechnology, biology, and medicine 01/2012; 8(7):1081-7. · 6.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanomaterials have great potential in the field of medicine and have been studied extensively. In a previous study, we addressed the potential of silver iodide (AgI) as X-ray contrast media, because it possessed high imaging ability in the measurement by X-ray computed tomography (X-CT) in vitro, and its surface can be modified with many functional groups. We developed the method of silica coating to make AgI nanoparticles more stable and uniform in size. However, the safety and metabolism of nanoparticles in vivo remains to be determined. The objective of the present study was to evaluate the in vivo biodistribution of silica-coated AgI nanoparticles (SAgINPs). X-CT, transmission electron microscopy (TEM), and inductively coupled plasma atomic emission spectrometry (ICP-AES) were performed prior to and at intervals following the intravenous administration of SAgINPs to rats and rabbits. ICP-AES is a spectral technique that can determine the presence and concentrations of metal samples. The X-CT study showed long-period enhancement in the liver and spleen, but not in the bladder of rats. The TEM study demonstrated that SAgINPs were found in hepatocytes. Using ICP-AES, Ag was detected in the bile juice of rabbits, but not found in the urine of these animals, suggesting that SAgINPs are excreted via the liver. This study shows the quantitative biodistribution of silica-coated nanoparticles for the first time, indicating that our silica coating technique is useful for development of nanoparticles with hepatic excretion. In conclusion, the SAgINPs may provide X-ray contrast media with high imaging ability and biocompatibility.
    The Tohoku Journal of Experimental Medicine 01/2012; 228(4):317-23. · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A preparation method for gadolinium compound (Gd) nanoparticles coated with silica (Gd/SiO2) is proposed. Gd nanoparticles were prepared with a homogeneous precipitation method at 80°C using 1.0×10−3 M Gd(NO3)3 and 0.5M urea in the presence of 1.0g/L stabilizer. Among stabilizers examined. Sodium n-dodecyl sulfate (SDS) was suitable as the stabilizer for preparing small Gd nanoparticles, and consequently Gd nanoparticles with a size of 46.2±12.4nm were prepared using the SDS. Silica-coating of the Gd nanoparticles was performed by a Stöber method at room temperature using 0.013M TEOS and 2.0×10−3M NaOH in water/1-propanol solution in the presence of 1.0×10−3M Gd nanoparticles, which resulted in production of Gd/SiO2 particles with an average size of 64.2±14.4nm. The Gd/SiO2 particles were surface-modified with 3-aminopropyltrimethoxysilane and succinic anhydride. It was confirmed by measurement of electrophretic light scattering that amino group or carboxyl group was introduced onto the Gd/SiO2 particles. The gadolinium concentration of 1.0×10−3M in the as-prepared colloid solution was increased up to a gadolinium concentration of 0.4M by centrifugation. The core–shell structure of Gd/SiO2 particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated Gd/SiO2 colloid solution showed an X-ray image with contrast as high as a commercial Gd complex contrast agent. Internal organs in a mouse could be imaged injecting the concentrated colloid solution into it. KeywordsCore–shell–Particle–Gadolinium–Silica–Homogeneous precipitation method–X-ray imaging
    Journal of Sol-Gel Science and Technology 09/2011; 59(3):650-657. · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) plays a critical role in angiogenesis and has been applied to medical therapy. However, because vascular imaging at the molecular level is impossible, the detailed in vivo dynamics of VEGF and its receptor (VEGFR) remain unknown. In this study, to understand the molecular distribution of VEGF and the VEGFR, we prepared ischemic mice with a new surgical method and induced angiogenesis in the gastrocnemius muscle. Then, we made a VEGF-conjugated fluorescence nanoparticle and performed staining of VEGFR-expressing cells with the fluorescent probe, demonstrating the high affinity of the probe for VEGFR. To observe the physiologic molecular distribution of VEGFR, we performed in vivo single-particle imaging of gastrocnemius in the ischemic leg with the fluorescent probe. The results suggested that only a 3-fold difference of VEGFR distribution is involved in the formation of branched vasculature in angiogenesis, although previous ex vivo data showed a 13-fold difference in its distribution, indicating that a method inducing a several-fold local increase of VEGFR concentration may be effective in generating site-specific angiogenesis in ischemic disease. This new in vivo imaging of ischemic mice could make useful contributions to understanding the mechanisms of angiogenesis and to developing a VEGFR-related drug.
    Blood 08/2011; 118(13):e93-e100. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a performance of precise control of shell thickness in silica-coating of Au nanoparticles based on a sol-gel process, and an investigation into X-ray imaging properties for the silica-coated Au (Au/SiO(2)) particles. The Au nanoparticles with a size of 16.9±1.2 nm prepared through a conventional citrate reduction method were used as core particles. The Au nanoparticles were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source, sodium hydroxide (NaOH) as a catalyst, and (3-aminopropyl) trimethoxysilane (APMS) as a silane coupling agent. An increase in TEOS concentration resulted in an increase in shell thickness. Under certain concentrations of Au, H(2)O, NaOH, and APMS, the Au/SiO(2) particles with silica shell thickness of 6.0-61.0 nm were produced with varying TEOS concentration. Absorption peak wavelength of surface plasmon resonance of the Au/SiO(2) colloid solution depended on silica shell thickness, which agreed approximately with the predictions by Mie theory. The as-prepared colloid solution could be concentrated up to an Au concentration of 0.19 M with salting-out and centrifugation. The concentrated colloid solution showed an X-ray image with high contrast, and a computed tomography value for the colloid solution with an Au concentration of 0.129 M was achieved 1329.7±52.7 HU.
    Journal of Colloid and Interface Science 01/2011; 358(2):329-33. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which HIV-1-Tat protein transduction domain (TatP) enters the cell remains unclear because of an insufficient understanding of the initial kinetics of peptide entry. Here, we report the successful visualization and tracking of TatP molecular kinetics on the cell surface with 7-nm spatial precision using quantum dots. Strong cell binding was only observed with a TatP valence of ≥8, whereas monovalent TatP binding was negligible. The requirement of the cell-surface heparan sulfate (HS) chains of HS proteoglycans (HSPGs) for TatP binding and intracellular transport was demonstrated by the enzymatic removal of HS and simultaneous observation of two individual particles. Multivalent TatP induces HSPG cross-linking, recruiting activated Rac1 to adjacent lipid rafts and thereby enhancing the recruitment of TatP/HSPG to actin-associated microdomains and its internalization by macropinocytosis. These findings clarify the initial binding mechanism of TatP to the cell surface and demonstrate the importance of TatP valence for strong surface binding and signal transduction. Our data also shed light on the ability of TatP to exploit the machinery of living cells, using HSPG signaling to activate Rac1 and alter TatP mobility and internalization. This work should guide the future design of TatP-based peptides as therapeutic nanocarriers with efficient transduction.
    Journal of Biological Chemistry 01/2011; 286(12):10581-92. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method for magnetite-deposition on AgI-SiO2 core-shell (AgI/SiO2) particles is proposed. A colloid solution of 1.0×10−3 M AgI nanoparticles was prepared mixing silver perchlorate at 1.0×10−3 M and potassium iodide at 2.0×10−3 M at 5°C, and then adding −3-mercaptopropyltrimethoxysilane at 4.5×10−5 M at 20°C. AgI/SiO2 particles with an average size of 42.7±10.3 nm and a AgI core size of 23.5±5.8 nm were prepared using a Stöber method at 20°C in water/ethanol solution with 8.0×10−3 M tetraethylorthosilicate and 1.1×10−3 M NaOH in the presence of 1.0×10−3 M AgI nanoparticles. Preparation of magnetite nanoparticle colloid solution was performed with a homogeneous precipitation method using 5.0 M urea aqueous solution and 1.0×10−2 M iron chloride aqueous solution with Fe2+/Fe3+ molecular ratios of 1/0, 2/1, 1/2 and 0/1 in (50/50) (v/v) water/1-propanol solution at 80°C. Magnetite that revealed ferromagnetic property were produced using the ratios of 1/0, 2/1 and 1/2. Magnetite-deposition on the AgI/SiO2 particles was performed preparing the magnetite by the homogeneous precipitation method using 1.0×10−2 M iron chloride and 5.0 M urea in the presence of the AgI/SiO2 particles ([AgI] = 2.0×10−4 M). Tiny magnetite nanoparticles were deposited on the AgI/SiO2 particle surface. The magnetite-deposited AgI/SiO2 particles were ferromagnetic, and were drawn close to magnet. These results confirmed that the homogeneous precipitation method was suitable to magnetite-deposition.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sentinel lymph node diagnosis contributes to operative strategy in cancer surgery. During lymph node metastasis, cancer cells first reach the sentinel lymph node (SLN) via lymph flow. To perform SLN biopsy effectively, it is important that cancer cells are detected with high sensitivity in SLN connected to the tumor site. Here we present a method to visualize a high-risk area in the SLN for lymph node metastasis with a high degree of accuracy. Quantum dots (QDs), bright fluorescent nanoparticles, were endoscopically injected into the gastrointestinal wall of pigs, and their signal was specifically detected in the SLN with a laparoscopic device. Single-particle imaging under a confocal microscope showed that the QDs were distributed heterogeneously in the SLN and that their distribution marked the inflow locus of afferent lymphatic vessels where lymph node metastasis begins. Moreover, we developed a method using cellular marker conjugated QDs that visualizes specific cells in SLNs, suggesting that this method can be applied for the detection of cancer cells in sentinel lymph nodes using tumor-specific-molecular conjugated QDs. These results show that our method might significantly increase the detection rate of cancer metastasis in SLNs.
    Nanotechnology 04/2010; 21(18):185103. · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Filopodia are actin-rich finger-like cytoplasmic projections extending from the leading edge of cells. Unconventional myosin-X is involved in the protrusion of filopodia. However, the underlying mechanism of myosin-X-induced filopodia formation is obscure. Here, we studied the movements of myosin-X during filopodia protrusion using a total internal reflection microscope to clarify the mechanism of myosin-X-induced filopodia formation. Myosin-X was recruited to the discrete site at the leading edge where it assembles with exponential kinetics before the filopodia extension. The myosin-X-induced filopodia showed repeated extension-retraction cycles with each extension of 2.4 microm, which was critical to produce long filopodia. Myosin-X, lacking the FERM domain, could move to the tip as does the wild type. However, it was transported toward the cell body during filopodia retraction, did not undergo multiple extension-retraction cycles, and failed to produce long filopodia. During the filopodia protrusion, the single molecules of full-length myosin-X moved within filopodia. The majority of the fluorescence spots showed two-step photobleaching, suggesting that the moving myosin-X is a dimer. Deletion of the FERM domain did not change the movement at the single molecule level with the same velocity of approximately 600 nm/s as wild-type, suggesting that the myosin-X in filopodia moves without interaction with the attached membrane via the FERM domain. Based upon these results, we have proposed a model of myosin-X-induced filopodia protrusion.
    Journal of Biological Chemistry 04/2010; 285(25):19605-14. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a method for direct coating of fluorescent semiconductor nanoparticles with silica shell. The fluorescent semiconductor nanoparticles used were CdSe x Te1–x nanoparticles coated with ZnS and succeedingly surface-modified with carboxyl groups, or quantum dots (Q-dots). The Q-dots were silica-coated by performing sol–gel reaction of tetraethyl orthosilicate (TEOS) using NaOH as a catalyst in the presence of the Q-dots. Quasi-perfect Q-dots/silica core-shell particles were formed at 5.0M H2O and 4.0×10−4M NaOH. Under these concentrations of H2O and NaOH, the particle size of Q-dots/silica particles could be varied from 20.1 to 38.1nm as the TEOS concentration increased from 2.5×10−4 to 50×10−4 M. The Q-dots/silica particles showed fluorescence as well as the uncoated Q-dots. KeywordsQuantum dots-Nanoparticle-Core-shell-Silica-coating-Sol–gel-Stöber method
    Journal of Sol-Gel Science and Technology 01/2010; 55(1):79-85. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sentinel lymph node biopsy (SLNB) was developed as a new modality in the surgical diagnosis of lymph node metastases. Dye and radioisotope are major tracers for the detection of sentinel lymph nodes (SLN). Dye tends to excessively infiltrate into the interstitium due to their small size (less than several nanometers), resulting in difficulties in maintaining clear surgical fields. Radioisotopes are available in limited number of hospitals. Fluorescent nanoparticles are good candidates for SLN tracer to solve these problems, as we can choose suitable particle size and fluorescence wavelength of near-infrared. However, the use of nanoparticles faces safety issues, and many attempts have been performed by giving insulating coats on nanoparticles. In addition, the preparation of the uniform insulating layer is important to decrease variations in the quality as an SLN tracer. We herein succeeded in coating fluorescent polystyrene nanoparticles of 40 nm with uniform silica layer of 13 nm by the modified Stöber method. The light stability of silica coated nanoparticles was 1.3-fold greater than noncoated nanoparticles. The popliteal lymph node could be visualized by the silica coated nanoparticles with injection in the rat feet. The silica coated nanoparticles in lymph nodes could be observed by transmission electron microscope, suggesting that our silica coating method is useful as a SLN tracer with highly precise distribution of nanoparticles in histological evaluation. We also demonstrated for the first time that a prolonged enhancement of SLN is caused by the phagocytosis of fluorescent nanoparticles by both macrophages and dendritic cells.
    PLoS ONE 01/2010; 5(10):e13167. · 3.53 Impact Factor

Publication Stats

176 Citations
82.11 Total Impact Points


  • 2007–2013
    • Tohoku University
      • • Department of Surgical Oncology
      • • Graduate School of Medicine
      Sendai, Kagoshima, Japan
  • 2011–2012
    • Ibaraki University
      • College of Engineering
      Mito-shi, Ibaraki-ken, Japan
  • 2004
    • University of Tsukuba
      Tsukuba, Ibaraki, Japan