Clotilde Lagier-Tourenne

University of California, San Diego, San Diego, CA, United States

Are you Clotilde Lagier-Tourenne?

Claim your profile

Publications (35)312.32 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development.
    Nucleic acid therapeutics. 04/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an extended polyglutamine repeat in the N terminus of the Huntingtin protein (HTT). Reactive microglia and elevated cytokine levels are observed in the brains of HD patients, but the extent to which neuroinflammation results from extrinsic or cell-autonomous mechanisms in microglia is unknown. Using genome-wide approaches, we found that expression of mutant Huntingtin (mHTT) in microglia promoted cell-autonomous pro-inflammatory transcriptional activation by increasing the expression and transcriptional activities of the myeloid lineage-determining factors PU.1 and C/EBPs. We observed elevated levels of PU.1 and its target genes in the brains of mouse models and individuals with HD. Moreover, mHTT-expressing microglia exhibited an increased capacity to induce neuronal death ex vivo and in vivo in the presence of sterile inflammation. These findings suggest a cell-autonomous basis for enhanced microglia reactivity that may influence non-cell-autonomous HD pathogenesis.
    Nature Neuroscience 03/2014; · 15.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.
    Proceedings of the National Academy of Sciences 12/2013; · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions.
    Proceedings of the National Academy of Sciences 10/2013; · 9.74 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
    Proceedings of the National Academy of Sciences 02/2013; · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.
    Nature Neuroscience 09/2012; · 15.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) research is undergoing an era of unprecedented discoveries with the identification of new genes as major genetic causes of this disease. These discoveries reinforce the genetic, clinical and pathological overlap between ALS and frontotemporal lobar degeneration (FTLD). Common causes of these diseases include mutations in the RNA/DNA-binding proteins, TDP-43 and FUS/TLS and most recently, hexanucleotide expansions in the C9orf72 gene, discoveries that highlight the overlapping pathogenic mechanisms that trigger ALS and FTLD. TDP-43 and FUS/TLS, both of which participate in several steps of RNA processing, are abnormally aggregated and mislocalized in ALS and FTLD, while the expansion in the C9orf72 pre-mRNA strongly suggests sequestration of one or more RNA binding proteins in pathologic RNA foci. Hence, ALS and FTLD converge in pathogenic pathways disrupting the regulation of RNA processing. This article is part of a Special Issue entitled RNA-Binding Proteins.
    Brain research 03/2012; 1462:3-15. · 2.46 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3' untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation.
    Nature Neuroscience 02/2011; 14(4):459-68. · 15.25 Impact Factor
  • Neurology 01/2011; 76(9):A364-A364. · 8.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The diagnosis of rare inherited diseases is becoming more and more complex as an increasing number of clinical conditions appear to be genetically heterogeneous. Multigenic inheritance also applies to the autosomal recessive progressive cerebellar ataxias (ARCAs), for which 14 genes have been identified and more are expected to be discovered. We used homozygosity mapping as a guide for identification of the defective locus in patients with ARCA born from consanguineous parents. Patients from 97 families were analyzed with GeneChip Mapping 10K or 50K SNP Affymetrix microarrays. We identified six families homozygous for regions containing the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) gene, two families homozygous for the ataxia-telangiectasia gene (ATM), two families homozygous for the ataxia with oculomotor apraxia type 1 (AOA1) gene, and one family homozygous for the AOA type 2 (AOA2) gene. Upon direct gene testing, we were able to identify a disease-related mutation in all families but one of the two kindred homozygous at the ATM locus. Although linkage analyses pointed to a single locus on chromosome 11q22.1-q23.1 for this family, clinical features, normal levels of serum alpha-foetoprotein as well as absence of mutations in the ATM gene rather suggest the existence of an additional ARCA-related gene in that interval. While the use of homozygosity mapping was very effective at pointing to the correct gene, it also suggests that the majority of patients harbor mutations either in the genes of the rare forms of ARCA or in genes yet to be identified.
    Journal of Neurology 01/2011; 258(1):56-67. · 3.58 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Coenzyme Q(10) (CoQ(10)) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. The relative importance of respiratory chain defects, ROS production, and apoptosis in the pathogenesis of CoQ(10) deficiency is unknown. We determined previously that severe CoQ(10) deficiency in cultured skin fibroblasts harboring COQ2 and PDSS2 mutations produces divergent alterations of bioenergetics and oxidative stress. Here, to better understand the pathogenesis of CoQ(10) deficiency, we have characterized the effects of varying severities of CoQ(10) deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ(10) biosynthesis. Levels of CoQ(10) seem to correlate with ROS production; 10-15% and >60% residual CoQ(10) are not associated with significant ROS production, whereas 30-50% residual CoQ(10) is accompanied by increased ROS production and cell death. Our results confirm that varying degrees of CoQ(10) deficiency cause variable defects of ATP synthesis and oxidative stress. These findings may lead to more rational therapeutic strategies for CoQ(10) deficiency.
    The FASEB Journal 10/2010; 24(10):3733-43. · 5.70 Impact Factor
  • Clotilde Lagier-Tourenne, Don W Cleveland
    [show abstract] [hide abstract]
    ABSTRACT: Aggregates and mutations of the proteins ataxin-2 and TDP-43 have been implicated in distinct neurodegenerative disorders. An interplay between these proteins is now reported for amyotrophic lateral sclerosis.
    Nature 08/2010; 466(7310):1052-3. · 38.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have identified a novel form of recessive ataxia that segregates in three children of a large consanguineous Saudi Arabian family. The three patients presented with childhood onset gait and limb ataxia, dysarthria and had limited walking without aid into their teenage years. Two patients developed epilepsy at 7 months without relapse after treatment, and mental retardation. Linkage studies allowed us to identify a single locus that segregated with the disease on chromosome 3q28-qter. Mutation screening of all coding sequences revealed a single nucleotide deletion, 2927delC, in exon 19 of the KIAA0226 gene, which results in a frame shift of the C-terminal domain (p.Ala943ValfsX146). The KIAA0226 gene encodes a protein that we named rundataxin, with two conserved domains: an N-terminal RUN domain and a C-terminal domain containing a diacylglycerol binding-like motif. The closest paralogue of rundataxin, the plekstrin homology domain family member M1, has been shown to colocalize with Rab7, a small GTPase associated with late endosomes/lysosomes, suggesting that rundataxin may also be associated with vesicular trafficking and signalling pathways through its RUN and diacylglycerol binding-like domains. The rundataxin pathway appears therefore distinct from the ataxia pathways involving deficiency in mitochondrial or nuclear proteins and broadens the range of mechanisms leading to recessive ataxias.
    Brain 08/2010; 133(Pt 8):2439-47. · 9.92 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Dominant mutations in two functionally related DNA/RNA-binding proteins, trans-activating response region (TAR) DNA-binding protein with a molecular mass of 43 KDa (TDP-43) and fused in sarcoma/translocation in liposarcoma (FUS/TLS), cause an inherited form of ALS that is accompanied by nuclear and cytoplasmic aggregates containing TDP-43 or FUS/TLS. Using isogenic cell lines expressing wild-type or ALS-linked TDP-43 mutants and fibroblasts from a human patient, pulse-chase radiolabeling of newly synthesized proteins is used to determine, surprisingly, that ALS-linked TDP-43 mutant polypeptides are more stable than wild-type TDP-43. Tandem-affinity purification and quantitative mass spectrometry are used to identify TDP-43 complexes not only with heterogeneous nuclear ribonucleoproteins family proteins, as expected, but also with components of Drosha microprocessor complexes, consistent with roles for TDP-43 in both mRNA processing and microRNA biogenesis. A fraction of TDP-43 is shown to be complexed with FUS/TLS, an interaction substantially enhanced by TDP-43 mutants. Taken together, abnormal stability of mutant TDP-43 and its enhanced binding to normal FUS/TLS imply a convergence of pathogenic pathways from mutant TDP-43 and FUS/TLS in ALS.
    Proceedings of the National Academy of Sciences 07/2010; 107(30):13318-23. · 9.74 Impact Factor
  • Source
    Clotilde Lagier-Tourenne, Magdalini Polymenidou, Don W Cleveland
    [show abstract] [hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
    Human Molecular Genetics 04/2010; 19(R1):R46-64. · 7.69 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Myotonic dystrophy type 1 (DM1) is one of the most variable inherited human disorders. It is characterized by the involvement of multiple tissues and is caused by the expansion of a highly unstable CTG repeat. Variation in disease severity is partially accounted for by the number of CTG repeats inherited. However, the basis of the variable tissue-specific symptoms is unknown. We have determined that an unusual Dutch family co-segregating DM1, Charcot-Marie-Tooth neuropathy, encephalopathic attacks and early hearing loss, carries a complex variant repeat at the DM1 locus. The mutation comprises an expanded CTG tract at the 5'-end and a complex array of CTG repeats interspersed with multiple GGC and CCG repeats at the 3'-end. The complex variant repeat tract at the 3'-end of the array is relatively stable in both blood DNA and the maternal germ line, although the 5'-CTG tract remains genetically unstable and prone to expansion. Surprisingly though, even the pure 5'-CTG tract is more stable in blood DNA and the maternal germ line than archetypal DM1 alleles of a similar size. Complex variant repeats were also identified at the 3'-end of the CTG array of approximately 3-4% of unrelated DM1 patients. The observed polarity and the stabilizing effect of the variant repeats implicate a cis-acting modifier of mutational dynamics in the 3'-flanking DNA. The presence of such variant repeats very likely contributes toward the unusual symptoms in the Dutch family and additional symptomatic variation in DM1 via affects on both RNA toxicity and somatic instability.
    Human Molecular Genetics 04/2010; 19(8):1399-412. · 7.69 Impact Factor
  • Neurology 01/2010; 74(9):A439-A439. · 8.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Ciliopathies are an expanding group of rare conditions characterized by multiorgan involvement, that are caused by mutations in genes encoding for proteins of the primary cilium or its apparatus. Among these genes, CEP290 bears an intriguing allelic spectrum, being commonly mutated in Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS), Senior-Loken syndrome and isolated Leber congenital amaurosis (LCA). Although these conditions are recessively inherited, in a subset of patients only one CEP290 mutation could be detected. To assess whether genomic rearrangements involving the CEP290 gene could represent a possible mutational mechanism in these cases, exon dosage analysis on genomic DNA was performed in two groups of CEP290 heterozygous patients, including five JSRD/MKS cases and four LCA, respectively. In one JSRD patient, we identified a large heterozygous deletion encompassing CEP290 C-terminus that resulted in marked reduction of mRNA expression. No copy number alterations were identified in the remaining probands. The present work expands the CEP290 genotypic spectrum to include multiexon deletions. Although this mechanism does not appear to be frequent, screening for genomic rearrangements should be considered in patients in whom a single CEP290 mutated allele was identified.
    American Journal of Medical Genetics Part A 09/2009; 149A(10):2173-80. · 2.30 Impact Factor
  • Source
    Clotilde Lagier-Tourenne, Don W Cleveland
    [show abstract] [hide abstract]
    ABSTRACT: Mutations in TDP-43, a DNA/RNA-binding protein, cause an inherited form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two recent studies (Kwiatkowski et al., 2009; Vance et al., 2009) now report that mutations in FUS/TLS, another DNA/RNA-binding protein, also trigger premature degeneration of motor neurons. TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as a key event in ALS pathogenesis.
    Cell 04/2009; 136(6):1001-4. · 31.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Molecular diagnosis of monogenic diseases with high genetic heterogeneity is usually challenging. In the case of limb-girdle muscular dystrophy, multiplex Western blot analysis is a very useful initial step, but that often fails to identify the primarily affected protein. We report how homozygosity analysis using a genome-wide SNP array allowed us to solve the diagnostic enigma in a patient with a moderate form of LGMD, born from consanguineous parents. The genome-wide scan performed on the patient's DNA revealed several regions of homozygosity, that were compared to the location of known LGMD genes. One such region indeed contained the TRIM32 gene. This gene was previously found mutated in families with limb-girdle muscular dystrophy type 2H (LGMD2H), a mild autosomal recessive myopathy described in Hutterite populations and in 4 patients with a diagnosis of sarcotubular myopathy. A single missense mutation was found in all these patients, located in a conserved domain of the C-terminal part of the protein. Another missense mutation affecting the N-terminal part of TRIM32, observed in a single consanguineous Bedouin family, was reported to cause the phenotypically unrelated and genetically heterogeneous Bardet-Biedl syndrome, defining the BBS11 locus. Sequencing of TRIM32 in our patient revealed a distal frameshift mutation, c.1753_1766dup14 (p.Ile590Leu fsX38). Together with two recently reported mutations, this novel mutation confirms that integrity of the C-terminal domain of TRIM32 is necessary for muscle maintenance.
    Neuromuscular Disorders 04/2009; 19(4):255-60. · 3.46 Impact Factor

Publication Stats

1k Citations
312.32 Total Impact Points


  • 2009–2013
    • University of California, San Diego
      • • Department of Anesthesiology
      • • Department of Neurosciences
      • • Department of Cellular and Molecular Medicine (CMM)
      San Diego, CA, United States
    • IRCCS Ospedale Casa Sollievo della Sofferenza
      Giovanni Rotondo, Apulia, Italy
  • 2010–2012
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States
  • 2003–2011
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 2004–2007
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 2006
    • CUNY Graduate Center
      New York City, New York, United States