Andre Larochelle

National Heart, Lung, and Blood Institute, Bethesda, MD, United States

Are you Andre Larochelle?

Claim your profile

Publications (29)232.57 Total impact

  • Andre Larochelle
    Cytotherapy 09/2013; 15(9):1043-5. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of clonal perturbations and leukemia in patients transplanted with gamma retroviral vector-transduced autologous hematopoietic stem and progenitor cells (HSPCs) has stimulated extensive investigation, demonstrating that proviral insertions mayperturb adjacent proto-oncogene expression. Although enhancer-deleted lentiviruses are less likely to result in insertional oncogenesis, there is evidence that they may perturb transcript splicing, and one patient with a benign clonal expansion of lentivirally-transduced HPSC has been reported. The rhesus macaque model provides an opportunity for informative long-term analysis to ask whether transduction impacts on long-term HSPCproperties. We utilized two techniques to examine whether lentivirally-transduced HSPCs from eight rhesus macaques transplanted 1-13.5 years previously are perturbed at a population level, comparing telomere length as a measure of replicative history and gene expression profile of vector positive versus vector negative cells. There were no differences in telomere lengths between sorted GFP+ and GFP- blood cells, suggesting that lentiviral transduction did not globally disrupt replicative patterns. Bone marrow GFP+ and GFP- CD34+ cells showed no differences in gene expression using unsupervised and principal component analysis. These studies did not uncover any global long-term perturbation of proliferation, differentiation, or other important functional parameters of transduced HSPCs in the rhesus macaque model.Molecular Therapy (2013); accepted article preview online 18 July 2013; doi:10.1038/mt.2013.168.
    Molecular Therapy 07/2013; · 7.04 Impact Factor
  • Source
  • Source
  • Andre Larochelle, Cynthia E Dunbar
    [Show abstract] [Hide abstract]
    ABSTRACT: The modern laboratory mouse has become a central tool for biomedical research with a notable influence in the field of hematopoiesis. Application of retroviral-based gene transfer approaches to mouse hematopoietic stem cells (HSCs) has led to a sophisticated understanding of the hematopoietic hierarchy in this model. However, the assumption that gene transfer methodologies developed in the mouse could be similarly applied to human HSCs for the treatment of human diseases left the field of gene therapy in a decade-long quandary. It is not until more relevant humanized xenograft mouse models and phylogenetically related large animal species were used to optimize gene transfer methodologies that unequivocal clinical successes were achieved. However, the subsequent reporting of severe adverse events in these clinical trials casted doubts on the predictive value of conventional pre-clinical testing, and encouraged the development of new assays for assessing the relative genotoxicity of various vector designs.
    Seminars in Hematology 04/2013; 50(2):101-130. · 3.36 Impact Factor
  • Andre Larochelle
    Cytotherapy 09/2012; 14(8):900-1. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.
    Blood 02/2012; 119(8):1848-55. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to expand hematopoietic stem and progenitor cells (HSPCs) in vitro will enhance the success of a wide range of transplant-related therapies. PTEN (phosphatase and tensin homologue deleted on chromosome 10) has been implicated as a regulator of murine HSPC self-renewal, but little is understood about the role of PTEN in human HSPC regulation. We tested the impact of transient small interfering RNA (siRNA)-induced inhibition of PTEN expression in human CD34(+) cells on their cell cycle profile, their susceptibility to retroviral transduction, and their ability to self-renew and repopulate nonobese diabetic/severe combined immunodeficiency disease with interleukin-2 receptor γ-chain deficiency mice. Reduced PTEN messenger RNA and protein levels were confirmed in PTEN siRNA-treated CD34(+) cells compared with control siRNA-treated CD34(+) cells. Transient silencing of PTEN in CD34(+) cells promoted their entry into cell cycle, and increased their expansion in vitro compared with control siRNA-treated CD34(+) cells. When these cells were transduced with retroviral vectors, transduction efficiencies in the bulk CD34(+) cells transfected with PTEN siRNA were significantly higher compared with CD34(+) cells transfected with a control siRNA. Transient PTEN suppression in CD34(+) cells also increased their proliferation and engraftment potential in nonobese diabetic/severe combined immunodeficiency disease with interleukin-2 receptor γ-chain deficiency mice, and maintained their multilineage differentiation capacity in vivo. No mice developed myeloproliferative disorders or leukemias. Similar to findings with murine HSPC, PTEN may also promote quiescence of human HSPC. With optimization of technologies for transfer of siRNA in primary CD34(+) cells, this approach may facilitate investigations into the mechanisms underlying HSPC self-renewal, and could find clinical applications in gene therapy protocols.
    Experimental hematology 01/2012; 40(1):84-91. · 3.11 Impact Factor
  • Source
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 08/2011; 25(8):1378. · 10.16 Impact Factor
  • Blood 05/2011; 117(21):5774-6. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Steady-state egress of hematopoietic progenitor cells can be rapidly amplified by mobilizing agents such as AMD3100, the mechanism, however, is poorly understood. We report that AMD3100 increased the homeostatic release of the chemokine stromal cell derived factor-1 (SDF-1) to the circulation in mice and non-human primates. Neutralizing antibodies against CXCR4 or SDF-1 inhibited both steady state and AMD3100-induced SDF-1 release and reduced egress of murine progenitor cells over mature leukocytes. Intra-bone injection of biotinylated SDF-1 also enhanced release of this chemokine and murine progenitor cell mobilization. AMD3100 directly induced SDF-1 release from CXCR4(+) human bone marrow osteoblasts and endothelial cells and activated uPA in a CXCR4/JNK-dependent manner. Additionally, ROS inhibition reduced AMD3100-induced SDF-1 release, activation of circulating uPA and mobilization of progenitor cells. Norepinephrine treatment, mimicking acute stress, rapidly increased SDF-1 release and progenitor cell mobilization, whereas β2-adrenergic antagonist inhibited both steady state and AMD3100-induced SDF-1 release and progenitor cell mobilization in mice. In conclusion, this study reveals that SDF-1 release from bone marrow stromal cells to the circulation emerges as a pivotal mechanism essential for steady-state egress and rapid mobilization of hematopoietic progenitor cells, but not mature leukocytes.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 04/2011; 25(8):1286-96. · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various combinations of antibodies directed to cell surface markers have been used to isolate human and rhesus macaque hematopoietic stem cells (HSCs). These protocols result in poor enrichment or require multiple complex steps. Recently, a simple phenotype for HSCs based on cell surface markers from the signaling lymphocyte activation molecule (SLAM) family of receptors has been reported in the mouse. We examined the possibility of using the SLAM markers to facilitate the isolation of highly enriched populations of HSCs in humans and rhesus macaques. We isolated SLAM (CD150(+)CD48(-)) and non-SLAM (not CD150(+)CD48(-)) cells from human umbilical cord blood CD34(+) cells as well as from human and rhesus macaque mobilized peripheral blood CD34(+) cells and compared their ability to form colonies in vitro and reconstitute immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 γc receptor(null), NSG) mice. We found that the CD34(+) SLAM population contributed equally or less to colony formation in vitro and to long-term reconstitution in NSG mice compared with the CD34(+) non-SLAM population. Thus, SLAM family markers do not permit the same degree of HSC enrichment in humans and rhesus macaques as in mice.
    Blood 02/2011; 117(5):1550-4. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of proto-oncogenes by retroviral insertion is an important issue delaying clinical development of gene therapy. We have reported the nonrandom persistence of hematopoietic clones with vector insertions within the MDS1/EVI1 locus following transplantation of rhesus macaques. We now ask whether prolonged culture of transduced CD34(+) cells before transplantation selects for clones with insertions in the MDS1/EVI11 or other proto-oncogene loci. CD34(+) cells were transduced with standard retroviral vectors for 4 days and then continued in culture for an additional 6 days before transplantation. A 15% of insertions identified in granulocytes 6 months post-transplant were in MDS1/EVI11, significantly increased compared to the frequency in animals transplanted with cells immediately following transduction. MDS1/EVI1 clones became more dominant over time post-transplantation in one animal that was followed long term, accompanied by an increased overall copy number of vector-containing granulocytes, with one MDS1/EVI1 clone eventually accounting for 100% of transduced granulocytes and marrow colony-forming unit (CFU). This vector insertion increased the expression of Evi1 mRNA. There was no overrepresentation of MDS1/EVI1 insertions contributing to lymphoid lineages. Strategies involving prolonged ex vivo expansion of transduced cells may increase the risk of genotoxicity.
    Molecular Therapy 09/2010; 18(9):1633-9. · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The risk of genotoxicity of retroviral vector-delivered gene therapy targeting hematopoietic stem cells (HSCs) has been highlighted by the development of clonal dominance and malignancies in human and animal gene therapy trials. Large-animal models have proven invaluable to test the safety of retroviral vectors, but the detection of clonal dominance may require years of follow-up. We hypothesized that hematopoietic stress may accelerate the proliferation and therefore the detection of abnormal clones in these models. We administered four monthly busulfan (Bu) infusions to induce hematopoietic stress in a healthy rhesus macaque previously transplanted with CD34+ cells transduced with retroviral vectors carrying a simple marker gene. Busulfan administration resulted in significant cytopenias with each cycle, and prolonged pancytopenia after the final cycle with eventual recovery. Before busulfan treatment there was highly polyclonal marking in all lineages. After Bu administration clonal diversity was markedly decreased in all lineages. Unexpectedly, we found no evidence of selection of the MDS1/EVI1 clones present before Bu administration, but a clone with a vector integration in intron 1 of the histone deacetylase-7 (HDAC7) gene became dominant in granulocytes over time after Bu administration. The overall marking level in the animal was increased significantly after Bu treatment and coincident with expansion of the HDAC7 clone, suggesting an in vivo advantage for this clone under stress. HDAC7 expression was upregulated in marrow progenitors containing the vector. Almost 5 years after Bu administration, the animal developed progressive cytopenias, and at autopsy the marrow showed complete lack of neutrophil or platelet maturation, with a new population of approximately 20% undifferentiated blasts. These data suggest that chemotherapeutic stress may accelerate vector-related clonal dominance, even in the absence of drug resistance genes expressed by the vector. This model may both accelerate the detection of abnormal clones to facilitate analysis of genotoxicity for human gene therapy, and help assess the safety of administering myelotoxic chemotherapeutic agents in patients previously engrafted with vector-containing cells.
    Human gene therapy 06/2010; 21(6):695-703. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Side population (SP) fraction cells, identified by efflux of Hoechst dye, are present in virtually all normal and malignant tissues. The relationship between SP cells, drug resistance and cancer stem cells is poorly understood. Small-cell lung cancer (SCLC) is a highly aggressive human tumour with a 5-year survival rate of <10%. These features suggest enrichment in cancer stem cells. We examined several SCLC cell lines and found that they contain a consistent SP fraction that comprises <1% of the bulk population. Side population cells have higher proliferative capacity in vitro, efficient self-renewal and reduced cell surface expression of neuronal differentiation markers, CD56 and CD90, as compared with non-SP cells. Previous reports indicated that several thousand SP cells from non-small-cell lung cancer are required to form tumours in mice. In contrast, as few as 50 SP cells from H146 and H526 SCLC cell lines rapidly reconstituted tumours. Whereas non-SP cells formed fewer and slower-growing tumours, SP cells over-expressed many genes associated with cancer stem cell and drug resistance: ABCG2, FGF1, IGF1, MYC, SOX1/2, WNT1, as well as genes involved in angiogenesis, Notch and Hedgehog pathways. Side population cells from SCLC are highly enriched in tumourigenic cells and are characterised by a specific stem cell-associated gene expression signature. This gene signature may be used for development of targeted therapies for this rapidly fatal tumour.
    British Journal of Cancer 05/2010; 102(11):1636-44. · 5.08 Impact Factor
  • Source
    Cynthia E Dunbar, Andre Larochelle
    Nature medicine 02/2010; 16(2):163-5. · 27.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen.
    The Journal of clinical investigation 07/2009; 119(7):1952-63. · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that lentiviral vectors derived from the simian immunodeficiency virus (SIV) were efficient at transducing rhesus hematopoietic repopulating cells. To evaluate the persistence of vector-containing and -expressing cells long term, and the safety implications of SIV lentiviral vector-mediated gene transfer, we followed 3 rhesus macaques for more than 4 years after transplantation with transduced CD34+ cells. All 3 animals demonstrated significant vector marking and expression of the GFP transgene in T cells, B cells, and granulocytes, with mean GFP+ levels of 6.7% (range, 3.3%-13.0%), 7.4% (4.2%-13.4%), and 5.6% (3.1%-10.5%), respectively. There was no vector silencing in hematopoietic cells over time. Vector insertion site analysis of granulocytes demonstrated sustained highly polyclonal reconstitution, with no evidence for progression to oligoclonality. A significant number of clones were found to contribute at both 1-year and 3- or 4-year time points. No vector integrations were detected in the MDS1/EVI1 region, in contrast to our previous findings with a gamma-retroviral vector. These data show that lentiviral vectors can mediate stable and efficient long-term expression in the progeny of transduced hematopoietic stem cells, with an integration profile that may be safer than that of standard Moloney murine leukemia virus (MLV)-derived retroviral vectors.
    Blood 05/2009; 113(22):5434-43. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haematopoietic stem-progenitor cells (HSPCs) reside in the bone marrow niche, where interactions with osteoblasts provide essential cues for their proliferation and survival. Here, we use live-cell imaging to characterize both the site of contact between osteoblasts and haematopoietic progenitor cells (HPCs) and events at this site that result in downstream signalling responses important for niche maintenance. HPCs made prolonged contact with the osteoblast surface through a specialized membrane domain enriched in prominin 1, CD63 and rhodamine PE. At the contact site, portions of the specialized domain containing these molecules were taken up by the osteoblast and internalized into SARA-positive signalling endosomes. This caused osteoblasts to downregulate Smad signalling and increase production of stromal-derived factor-1 (SDF-1), a chemokine responsible for HSPC homing to bone marrow. These findings identify a mechanism involving intercellular transfer to signalling endosomes for targeted regulation of signalling and remodelling events within an ex vivo osteoblastic niche.
    Nature Cell Biology 03/2009; 11(3):303-11. · 20.76 Impact Factor
  • Source
    Andre Larochelle, Cynthia E Dunbar
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor homeobox B4 (HOXB4) is a promising agent capable of providing a growth advantage to genetically modified hematopoietic stem and progenitor cells (HSPCs). In this issue of the JCI, Zhang and colleagues overexpressed HOXB4 in HSPCs from large animals using retroviral vectors (see the related article beginning on page 1502). Two years after transplantation, most animals developed leukemia, a consequence of combined HOXB4 and deregulated protooncogene expression. These results highlight the risks of combining integrating vectors and growth-promoting genes for clinical applications.
    Journal of Clinical Investigation 05/2008; 118(4):1350-3. · 12.81 Impact Factor