Dirk K Hincha

Max Planck Institute of Molecular Plant Physiology, Potsdam, Brandenburg, Germany

Are you Dirk K Hincha?

Claim your profile

Publications (131)472.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As multifaceted molecules, reactive oxygen species (ROS) are known to accumulate in response to various stresses. Ozone (O3) is an air pollutant with detrimental effect on plants, and O3 can also be used as a tool to study the role of ROS in signaling. Genetic variation of O3 sensitivity in different Arabidopsis accessions highlights the complex genetic architecture of plant responses to ROS. To investigate the genetic basis of O3 sensitivity, a recombinant inbred line (RIL) population between two Arabidopsis accessions with distinct O3 sensitivity, C24 (O3 tolerant) and Te (O3 sensitive), was used for quantitative trait loci (QTL) mapping. Through analysis of QTL mapping combined with transcriptome changes in response to O3, we identified three causal QTLs and several potential candidate genes regulating the response to O3. Based on gene expression data, water loss and stomatal conductance measurement, we found that a combination of relatively low stomatal conductance and constitutive activation of salicylic acid (SA) mediated defense signaling were responsible for the O3 tolerance in C24. Application of exogenous SA prior to O3 exposure can mimic the constitutive SA signaling in C24, and could attenuate O3 induced leaf damage in the sensitive Arabidopsis accessions Te and Cvi-0.
    Plant Cell and Environment 12/2014; · 5.91 Impact Factor
  • Anja Thalhammer, Dirk K Hincha
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Plants as sessile organisms are strongly challenged by environmental stresses. Many plants species are able to cold-acclimate, acquiring higher freezing tolerance upon exposure to low but non-freezing temperatures. Among a plethora of adaptational processes, this involves the accumulation of cold regulated (COR) proteins that are assumed to stabilize and protect cellular structures during freezing. However, their molecular functions are largely unknown. We recently reported a comprehensive study of two intrinsically disordered cold regulated chloroplast proteins, COR15A and COR15B from Arabidopsis thaliana. They are necessary for full cold acclimation. During freezing, they stabilize leaf cells through folding and binding to chloroplast membranes. Contrary to evidence from in-vitro experiments, they play no role in enzyme stabilization in vivo. Elucidating these major functional and structural characteristics and estimation of protein abundance allow us to propose a detailed model for the mode of action of the two COR15 proteins.
    Plant signaling & behavior 12/2014;
  • Mai Q Le, Majken Pagter, Dirk K Hincha
    [Show abstract] [Hide abstract]
    ABSTRACT: During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5 % of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
    Plant Molecular Biology 10/2014; · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible break-down of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N invertase activity is underscored by the light induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca++ changes that activate calcium-dependent kinases, await further study.This article is protected by copyright. All rights reserved.
    The Plant Journal 09/2014; · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low non-freezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis thaliana. They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins.
    Plant physiology 08/2014; · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are "atypical", since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.
    Planta 05/2014; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the role of abscisic acid (ABA) in tomato (Solanum lycopersicum L.) responses to suboptimal root temperature (T), a near-isogenic line carrying the notabilis null mutation in the ABA biosynthesis gene LeNCED1 was reciprocally grafted with its parental cultivar Ailsa Craig. Exposure of tomato to suboptimal root T (15 °C) decreased leaf area expansion, shoot elongation and plant biomass in comparison with optimal root T (25 °C). Both suboptimal root T and null mutation of the LeNCED1 gene in root and shoot reduced leaf area and total plant biomass, but these two factors did not interact. Transpiration rates and stomatal conductances decreased, while net CO2 assimilation was not influenced by root exposure to suboptimal T. However, notabilis scions exhibited higher net assimilation rates, stomatal conductances and transpiration rates than Ailsa Craig scions. Moreover, notabilis plants invested much more biomass into the root than Ailsa Craig self-grafts, thereby improving their water uptake capacity. Lipid peroxidation as well as polyamines and guaiacol-peroxidase (G-POD), which are considered to possess antioxidant properties, increased in the leaves of all grafting combinations of tomato when exposed to suboptimal root T. All grafting combinations showed an increase in shoot ABA levels when exposed to suboptimal root T. However, the levels of ABA in the shoot of notabilis did not differ significantly from those found in Ailsa Craig, indicating that inactivation of LeNCED1 did not impair ABA accumulation in the leaves at low root-zone T. The genes LeNCED2 and LeNCED6 were not up-regulated at low root-zone T and therefore not responsible for ABA biosynthesis in notabilis. Increased ABA levels in tomato exposed to suboptimal root T were associated with elevated levels of the polyamine putrescine which contributes to ABA biosynthesis. In conclusion, the introgression in Ailsa Craig that contains the mutation resulting from inactivation of the LeNCED1 gene includes further genetic differences that influence responses to suboptimal root-zone T, such as plant growth restriction and ROS scavenging modification.
    Environmental and Experimental Botany 01/2014; 97:11–21. · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put) content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd) content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm) content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease) or salt (unchanged) conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3), one generally stress-repressed gene (ADC1), constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1), specifically drought-induced genes (SAMDC2, AIH), one specifically drought-repressed gene (CPA3) and one specifically salt-stress repressed gene (SAMDC4), revealing both overlapping and specific stress responses under these conditions.
    Frontiers in Plant Science 01/2014; 5:182. · 3.64 Impact Factor
  • Anja Thalhammer, Dirk K Hincha, Ellen Zuther
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative assessment of freezing tolerance is essential to unravel plant adaptations to cold temperatures. Not only the survival of whole plants but also impairment of detached leaves after a freeze-thaw cycle can be used to accurately quantify plant freezing tolerance in terms of LT50 values. Here we describe two methods to determine the freezing tolerance of detached leaves using different physiological parameters. Firstly, we illustrate how to assess the integrity of (predominantly) the plasma membrane during freezing using an electrolyte leakage assay. Secondly, we provide a chlorophyll fluorescence imaging protocol to determine the freezing tolerance of the photosynthetic apparatus.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1166:15-24. · 1.29 Impact Factor
  • Dirk K Hincha, Ellen Zuther
    [Show abstract] [Hide abstract]
    ABSTRACT: This introductory chapter provides a brief overview of plant freezing tolerance and cold acclimation and describes the basic concepts and approaches that are currently followed to investigate these phenomena. We highlight the multidisciplinary nature of these investigations and the necessity to use methodologies from different branches of science, such as ecology, genetics, physiology, biochemistry, and biophysics, to come to a complete understanding of the complex adaptive mechanisms underlying plant cold acclimation.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1166:1-6. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most molecular studies of plant stress tolerance have been performed with Arabidopsis thaliana, although it is not particularly stress tolerant and may lack protective mechanisms required to survive extreme environmental conditions. Thellungiella salsuginea has attracted interest as an alternative plant model species with high tolerance of various abiotic stresses. While the T. salsuginea genome has recently been sequenced, its annotation is still incomplete and transcriptomic information is scarce. In addition, functional genomics investigations in this species are severely hampered by a lack of affordable tools for genome-wide gene expression studies. Here, we report the results of Thellungiella de novo transcriptome assembly and annotation based on 454 pyrosequencing and development and validation of a T. salsuginea microarray. ESTs were generated from a non-normalized and a normalized library synthesized from RNA pooled from samples covering different tissues and abiotic stress conditions. Both libraries yielded partially unique sequences, indicating their necessity to obtain comprehensive transcriptome coverage. More than 1 million sequence reads were assembled into 42,810 unigenes, approximately 50% of which could be functionally annotated. These unigenes were compared to all available Thellungiella genome sequence information. In addition, the groups of Late Embryogenesis Abundant (LEA) proteins, Mitogen Activated Protein (MAP) kinases and protein phosphatases were annotated in detail. We also predicted the target genes for 384 putative miRNAs. From the sequence information, we constructed a 44 k Agilent oligonucleotide microarray. Comparison of same-species and cross-species hybridization results showed superior performance of the newly designed array for T. salsuginea samples. The developed microarrayswere used to investigate transcriptional responses of T. salsuginea and Arabidopsis during cold acclimation using the MapMan software. This study provides the first comprehensive transcriptome information for the extremophile Arabidopsis relative T. salsuginea. The data constitute a more than three-fold increase in the number of publicly available unigene sequences and will greatly facilitate genome annotation. In addition, we have designed and validated the first genome-wide microarray for T. salsuginea, which will be commercially available. Together with the publicly available MapMan software this will become an important tool for functional genomics of plant stress tolerance.
    BMC Genomics 11/2013; 14(1):793. · 4.04 Impact Factor
  • Source
    Antoaneta V Popova, Dirk K Hincha
    [Show abstract] [Hide abstract]
    ABSTRACT: Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state. Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (Tm) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed Tm, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased Tm, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers. The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions.
    BMC Biophysics 07/2013; 6(1):9. · 2.18 Impact Factor
  • Source
    Anja Thalhammer, Dirk K. Hincha
    01/2013: chapter 8: pages 89-105; Springer New York., ISBN: 9781461482529
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice provides about half of the calories consumed in Asian countries, but its productivity is often reduced by drought, especially when grown under rain-fed conditions. Cultivars with increased drought tolerance have been bred over centuries. Slow selection for drought tolerance on the basis of phenotypic traits may be accelerated by using molecular markers identified through expression and metabolic profiling. Previously, we identified 46 candidate genes with significant genotype × environment interaction in an expression profiling study on four cultivars with contrasting drought tolerance. These potential markers and in addition GC-MS quantified metabolites were tested in 21 cultivars from both indica and japonica background that varied in drought tolerance. Leaf blades were sampled from this population of cultivars grown under control or long-term drought condition and subjected to expression analysis by qRT-PCR and metabolite profiling. Under drought stress, metabolite levels correlated mainly negatively with performance parameters, but eight metabolites correlated positively. For 28 genes, a significant correlation between expression level and performance under drought was confirmed. Negative correlations were predominant. Among those with significant positive correlation was the gene coding for a cytosolic fructose-1,6-bisphosphatase. This enzyme catalyzes a highly regulated step in C-metabolism. The metabolic and transcript marker candidates for drought tolerance were identified in a highly diverse population of cultivars. Thus, these markers may be used to select for tolerance in a wide range of rice germplasms.
    PLoS ONE 01/2013; 8(5):e63637. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Global climate change is leading to asymmetric atmospheric warming with reduced temperature differences between day and night. This has an increasing influence on crop plants. However, little is known about the physiology of high night temperature (HNT) effects and natural variation in HNT susceptibility. Twelve rice cultivars were investigated under HNT (30°C day/28°C night) and control (28°C day/21°C night) conditions. Chlorosis was observed under HNT and used to classify relative sensitivity of cultivars. The resulting mean sensitivity rank correlated significantly with seed yield under HNT (r = –0.547). Wide variability in HNT tolerance led to an increase in shoot FW and DW in tolerant, but decreased plant growth in sensitive cultivars. Growth parameters correlated negatively with HNT sensitivity. Respiration rate was significantly increased under HNT at the end of night for several cultivars 34 DAS and 41 DAS and for all cultivars 66 DAS whereas photosynthetic quantum yield was not influenced. Negative correlations of sensitivity rank with respiration rate at two time points under HNT (r = –0.305; r = –0.265) exclude higher respiration rates in sensitive cultivars as a primary cause for HNT sensitivity. Monosaccharide and starch concentrations of leaves were increased after 16 days of HNT, while sucrose was not affected. Additionally tolerant cultivars showed a higher increase of monosaccharide concentrations during the day under HNT compared with control conditions. While HNT did not lead to carbon depletion in rice leaves, tolerant cultivars coped better with HNT, enabling them to accumulate more carbohydrates than sensitive cultivars with leaves affected by chlorosis.
    Functional Plant Biology 01/2013; · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate), substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions.
    PLoS ONE 01/2013; 8(4):e60325. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to increase freezing tolerance when exposed to low temperatures is a property of many plant species from temperate climates and involves a wide array of metabolic adjustments and changes in gene expression. In Arabidopsis thaliana, natural accessions show high variation in their acclimation capacity, and freezing tolerance correlates with natural habitat temperatures. To investigate the genetic basis of this variation, a recombinant inbred line population from reciprocal crosses between the accessions C24 and Tenela (Te), showing large variation in tolerance, was established. Over 250 recombinant inbred lines were genotyped for 69 single nucleotide polymorphism markers in a linkage map with 391.9 cM and phenotyped for their freezing tolerance using the electrolyte leakage method that reports cell damage after a freeze-thaw cycle. Mapping of quantitative trait loci (QTL) for acclimated plants revealed three QTL regions on chromosomes 2, 4 and 5. Based on gene expression data, QTL regions were screened for genes differentially responding to low temperature in C24 and Te. Among the candidate genes, the Myb family transcription factor REVEILLE1 (At5g17300) on chromosome 5 was identified as a novel negative regulator of freezing tolerance in Arabidopsis.
    Plant Cell and Environment 12/2012; · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non-freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid-modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra-performance liquid chromatography coupled to Fourier-transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long-chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.
    The Plant Journal 10/2012; · 6.82 Impact Factor
  • Source
    Dirk K Hincha, Anja Thalhammer
    [Show abstract] [Hide abstract]
    ABSTRACT: LEA (late embryogenesis abundant) proteins were originally described almost 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant micro-organisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying or in the presence of membranes. Recent studies have concentrated on the potential roles of LEA proteins in stabilizing membranes or sensitive enzymes during freezing or drying, and the present review concentrates on these two possible functions of LEA proteins in cellular dehydration tolerance.
    Biochemical Society Transactions 10/2012; 40(5):1000-3. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thellungiella has been proposed as an extremophile alternative to Arabidopsis to investigate environmental stress tolerance. However, Arabidopsis accessions show large natural variation in their freezing tolerance and here the tolerance ranges of collections of accessions in the two species were compared. Leaf freezing tolerance of 16 Thellungiella accessions was assessed with an electrolyte leakage assay before and after 14 days of cold acclimation at 4°C. Soluble sugars (glucose, fructose, sucrose, raffinose) and free polyamines (putrescine, spermidine, spermine) were quantified by HPLC, proline photometrically. The ranges in nonacclimated freezing tolerance completely overlapped between Arabidopsis and Thellungiella. After cold acclimation, some Thellungiella accessions were more freezing tolerant than any Arabidopsis accessions. Acclimated freezing tolerance was correlated with sucrose levels in both species, but raffinose accumulation was lower in Thellungiella and only correlated with freezing tolerance in Arabidopsis. The reverse was true for leaf proline contents. Polyamine levels were generally similar between the species. Only spermine content was higher in nonacclimated Thellungiella plants, but decreased during acclimation and was negatively correlated with freezing tolerance. Thellungiella is not an extremophile with regard to freezing tolerance, but some accessions significantly expand the range present in Arabidopsis. The metabolite data indicate different metabolic adaptation strategies between the species.
    BMC Plant Biology 08/2012; 12:131. · 3.94 Impact Factor

Publication Stats

3k Citations
472.57 Total Impact Points


  • 2001–2014
    • Max Planck Institute of Molecular Plant Physiology
      • Division of Molecular Physiology
      Potsdam, Brandenburg, Germany
    • University of Angers
      Angers, Pays de la Loire, France
  • 2012
    • Universität Stuttgart
      • Institute of Biology
      Stuttgart, Baden-Wuerttemberg, Germany
  • 2010
    • Universität Potsdam
      Potsdam, Brandenburg, Germany
  • 2009
    • North Carolina State University
      Raleigh, North Carolina, United States
  • 2008
    • University of Florida
      • Department of Environmental Horticulture
      Gainesville, FL, United States
  • 1984–2006
    • University of Wuerzburg
      • Julius-von-Sachs-Institut of Biosciences
      Würzburg, Bavaria, Germany
  • 1992–2004
    • Freie Universität Berlin
      Berlín, Berlin, Germany
  • 2000–2002
    • University of California, Davis
      • Department of Molecular and Cellular Biology
      Davis, CA, United States
  • 1998–2002
    • Bulgarian Academy of Sciences
      • Institute of Biophysics and Biomedical Engineering
      Sofia, Oblast Sofiya-Grad, Bulgaria