Laurence Slutsker

KEMRI / CDC Research and Public Health Collaboration, Winam, Kisumu, Kenya

Are you Laurence Slutsker?

Claim your profile

Publications (172)1081.97 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent global malaria burden modeling efforts have produced significantly different estimates, particularly in adult malaria mortality. To measure malaria control progress, accurate malaria burden estimates across age groups are necessary. We determined age-specific malaria mortality rates in western Kenya to compare with recent global estimates. We collected data from 148,000 persons in a health and demographic surveillance system from 2003-2010. Standardized verbal autopsies were conducted for all deaths; probable cause of death was assigned using the InterVA-4 model. Annual malaria mortality rates per 1,000 person-years were generated by age group. Trends were analyzed using Poisson regression. From 2003-2010, in children <5 years the malaria mortality rate decreased from 13.2 to 3.7 per 1,000 person-years; the declines were greatest in the first three years of life. In children 5-14 years, the malaria mortality rate remained stable at 0.5 per 1,000 person-years. In persons ≥15 years, the malaria mortality rate decreased from 1.5 to 0.4 per 1,000 person-years. The malaria mortality rates in young children and persons aged ≥15 years decreased dramatically from 2003-2010 in western Kenya, but rates in older children have not declined. Sharp declines in some age groups likely reflect the national scale up of malaria control interventions and rapid expansion of HIV prevention services. These data highlight the importance of age-specific malaria mortality ascertainment and support current strategies to include all age groups in malaria control interventions.
    PLoS ONE 01/2014; 9(9):e106197. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study assesses full and timely vaccination coverage and factors associated with full vaccination in children ages 12-23 months in Gem, Nyanza Province, Kenya in 2003. A simple random sample of 1,769 households was selected, and guardians were invited to bring children under 5 years of age to participate in a survey. Full vaccination coverage was 31.1% among 244 children. Only 2.2% received all vaccinations in the target month for each vaccination. In multivariate logistic regression, children of mothers of higher parity (odds ratio [OR] = 0.27, 95% confidence interval [95% CI] = 0.13-0.65, P ≤ 0.01), children of mothers with lower maternal education (OR = 0.35, 95% CI = 0.13-0.97, P ≤ 0.05), or children in households with the spouse absent versus present (OR = 0.40, 95% CI = 0.17-0.91, P ≤ 0.05) were less likely to be fully vaccinated. These data serve as a baseline from which changes in vaccination coverage will be measured as interventions to improve vaccination timeliness are introduced.
    The American journal of tropical medicine and hygiene 12/2013; · 2.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass drug administration (MDA), defined as the empiric administration of a therapeutic antimalarial regimen to an entire population at the same time, has been a historic component of many malaria control and elimination programmes, but is not currently recommended. With renewed interest in MDA and its role in malaria elimination, this review aims to summarize the findings from existing research studies and program experiences of MDA strategies for reducing malaria burden and transmission. To assess the impact of antimalarial MDA on population asexual parasitaemia prevalence, parasitaemia incidence, gametocytaemia prevalence, anaemia prevalence, mortality and MDA-associated adverse events. We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE+, EMBASE, to February 2013. We also searched CABS Abstracts, LILACS, reference lists, and recent conference proceedings. Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data were selected. Studies administering intermittent preventive treatment (IPT) to sub-populations (for example, pregnant women, children or infants) were excluded. Two authors independently reviewed studies for inclusion, extracted data and assessed risk of bias. Studies were stratified by study design and then subgrouped by endemicity, by co-administration of 8-aminoquinoline plus schizonticide drugs and by plasmodium species. The quality of evidence was assessed using the GRADE approach. Two cluster-randomized trials, eight non-randomized controlled studies and 22 uncontrolled before-and-after studies are included in this review. Twenty-two studies (29 comparisons) compared MDA to placebo or no intervention of which two comparisons were conducted in areas of low endemicity (≤5%), 12 in areas of moderate endemicity (6-39%) and 15 in areas of high endemicity (≥ 40%). Ten studies evaluated MDA plus other vector control measures. The studies used a wide variety of MDA regimens incorporating different drugs, dosages, timings and numbers of MDA rounds. Many of the studies are now more than 30 years old. Areas of low endemicity (≤5%)Within the first month post-MDA, a single uncontrolled before-and-after study conducted in 1955 on a small Taiwanese island reported a much lower prevalence of parasitaemia following a single course of chloroquine compared to baseline (1 study, very low quality evidence). This lower parasite prevalence was still present after more than 12 months (one study, very low quality evidence). In addition, one cluster-randomized trial evaluating MDA in a low endemic setting reported zero episodes of parasitaemia at baseline, and throughout five months of follow-up in both the control and intervention arms (one study, very low quality evidence). Areas of moderate endemicity (6-39%)Within the first month post-MDA, the prevalence of parasitaemia was much lower in three non-randomized controlled studies from Kenya and India in the 1950s (RR 0.03, 95% CI 0.01 to 0.08, three studies, moderate quality evidence), and in three uncontrolled before-and-after studies conducted between 1954 and 1961 (RR 0.29, 95% CI 0.17 to 0.48, three studies,low quality evidence).The longest follow-up in these settings was four to six months. At this time point, the prevalence of parasitaemia remained substantially lower than controls in the two non-randomized controlled studies (RR 0.18, 95% CI 0.10 to 0.33, two studies, low quality evidence). In contrast, the two uncontrolled before-and-after studies found mixed results: one found no difference and one found a substantially higher prevalence compared to baseline (not pooled, two studies, very low quality evidence). Areas of high endemicity (≥40%)Within the first month post-MDA, the single cluster-randomized trial from the Gambia in 1999 found no significant difference in parasite prevalence (one study, low quality evidence). However, prevalence was much lower during the MDA programmes in three non-randomized controlled studies conducted in the 1960s and 1970s (RR 0.17, 95% CI 0.11 to 0.27, three studies, moderate quality evidence), and within one month of MDA in four uncontrolled before-and-after studies (RR 0.37, 95% CI 0.28 to 0.49, four studies,low quality evidence).Four trials reported changes in prevalence beyond three months. In the Gambia, the single cluster-randomized trial found no difference at five months (one trial, moderate quality evidence). The three uncontrolled before-and-after studies had mixed findings with large studies from Palestine and Cambodia showing sustained reductions at four months and 12 months, respectively, and a small study from Malaysia showing no difference after four to six months of follow-up (three studies,low quality evidence). 8-aminoquinolinesWe found no studies directly comparing MDA regimens that included 8-aminoquinolines with regimens that did not. In a crude subgroup analysis with a limited number of studies, we were unable to detect any evidence of additional benefit of primaquine in moderate- and high-transmission settings. Plasmodium speciesIn studies that reported species-specific outcomes, the same interventions resulted in a larger impact on Plasmodium falciparum compared to P. vivax. MDA appears to reduce substantially the initial risk of malaria parasitaemia. However, few studies showed sustained impact beyond six months post-MDA, and those that did were conducted on small islands or in highland settings.To assess whether there is an impact of MDA on malaria transmission in the longer term requires more quasi experimental studies with the intention of elimination, especially in low- and moderate-transmission settings. These studies need to address any long-term outcomes, any potential barriers for community uptake, and contribution to the development of drug resistance.
    Cochrane database of systematic reviews (Online) 12/2013; 12:CD008846. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-119kDa) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children <5 years old prior to the introduction of ITNs (1996) and after 5 years of high coverage ITN use (2001). A total of 12 MSP-119kDa haplotypes were detected in 1996 and 2001. The Q-KSNG-L and E-KSNG-L haplotypes corresponding to the FVO and FUP strains of P. falciparum were the most prevalent (range 32--37%), with an overall haplotype diversity of > 0.7. No MSP-119kDa 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains.
    Malaria Journal 08/2013; 12(1):295. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global health reflects the realities of globalization, including worldwide dissemination of infectious and noninfectious public health risks. Global health architecture is complex and better coordination is needed between multiple organizations. Three overlapping themes determine global health action and prioritization: development, security, and public health. These themes play out against a background of demographic change, socioeconomic development, and urbanization. Infectious diseases remain critical factors, but are no longer the major cause of global illness and death. Traditional indicators of public health, such as maternal and infant mortality rates no longer describe the health status of whole societies; this change highlights the need for investment in vital registration and disease-specific reporting. Noncommunicable diseases, injuries, and mental health will require greater attention from the world in the future. The new global health requires broader engagement by health organizations and all countries for the objectives of health equity, access, and coverage as priorities beyond the Millennium Development Goals are set.
    Emerging Infectious Diseases 08/2013; 19(8):1192-7. · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Artemether-lumefantrine (AL) was adopted as first-line treatment for uncomplicated malaria in Kenya in 2006. Monitoring drug efficacy at regular intervals is essential to prevent unnecessary morbidity and mortality. The efficacy of AL and dihydroartemisinin-piperaquine (DP) were evaluated for the treatment of uncomplicated malaria in children aged six to 59 months in western Kenya. From October 2010 to August 2011, children with fever or history of fever with uncomplicated Plasmodium falciparum mono-infection were enrolled in an in vivo efficacy trial in accordance with World Health Organization (WHO) guidelines. The children were randomized to treatment with a three-day course of AL or DP and efficacy outcomes were measured at 28 and 42 days after treatment initiation. A total of 137 children were enrolled in each treatment arm. There were no early treatment failures and all children except one had cleared parasites by day 3. Polymerase chain reaction (PCR)-uncorrected adequate clinical and parasitological response rate (ACPR) was 61% in the AL arm and 83% in the DP arm at day 28 (p = 0.001). PCR-corrected ACPR at day 28 was 97% in the AL group and 99% in the DP group, and it was 96% in both arms at day 42. AL and DP remain efficacious for the treatment of uncomplicated malaria among children in western Kenya. The longer half-life of piperaquine relative to lumefantrine may provide a prophylactic effect, accounting for the lower rate of re-infection in the first 28 days after treatment in the DP arm.
    Malaria Journal 07/2013; 12(1):254. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scale-up of malaria control interventions has resulted in a substantial decline in global malaria morbidity and mortality. Despite this achievement, there is evidence that current interventions alone will not lead to malaria elimination in most malaria-endemic areas and additional strategies need to be considered. Use of antimalarial drugs to target the reservoir of malaria infection is an option to reduce the transmission of malaria between humans and mosquito vectors. However, a large proportion of human malaria infections are asymptomatic, requiring treatment that is not triggered by care-seeking for clinical illness. This article reviews the evidence that asymptomatic malaria infection plays an important role in malaria transmission and that interventions to target this parasite reservoir may be needed to achieve malaria elimination in both low- and high-transmission areas.
    Expert Review of Anticancer Therapy 06/2013; 11(6):623-39. · 3.22 Impact Factor
  • Source
  • Source
    Laurence Slutsker, S Patrick Kachur
    [Show abstract] [Hide abstract]
    ABSTRACT: April 25 marks World Malaria Day, an opportunity for those who work to defeat the illness, to review progress and renew commitments. After a decade of steady success, this year's commemoration of the date is also an opportunity to reconsider current approaches and assess the state of the science needed to keep pace in the global effort to combat malaria.
    Malaria Journal 04/2013; 12(1):140. · 3.49 Impact Factor
  • The Lancet Infectious Diseases 04/2013; 13(4):292. · 19.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunoglobulin (Ig) GM and KM allotypes, genetic markers of γ and κ chains, are associated with humoral immune responsiveness. Previous studies have shown the relationships between GM6-carrying haplotypes and susceptibility to malaria infection in children and adults; however, the role of the genetic markers in placental malaria (PM) infection and PM with HIV co-infection during pregnancy has not been investigated. We examined the relationship between the gene polymorphisms of Ig GM6 and KM allotypes and the risk of PM infection in pregnant women with known HIV status. DNA samples from 728 pregnant women were genotyped for GM6 and KM alleles using polymerase chain reaction-restriction fragment length polymorphism method. Individual GM6 and KM genotypes and the combined GM6 and KM genotypes were assessed in relation to PM in HIV-1 negative and positive women, respectively. There was no significant effect of individual GM6 and KM genotypes on the risk of PM infection in HIV-1 negative and positive women. However, the combination of homozygosity for GM6(+) and KM3 was associated with decreased risk of PM (adjusted OR, 0.25; 95% CI, 0.08-0.8; P = 0.019) in HIV-1 negative women while in HIV-1 positive women the combination of GM6(+/-) with either KM1-3 or KM1 was associated with increased risk of PM infection (adjusted OR, 2.10; 95% CI, 1.18-3.73; P = 0.011). Hardy-Weinberg Equilibrium (HWE) tests further showed an overall significant positive F(is) (indication of deficit in heterozygotes) for GM6 while there was no deviation for KM genotype frequency from HWE in the same population. These findings suggest that the combination of homozygous GM6(+) and KM3 may protect against PM in HIV-1 negative women while the HIV-1 positive women with heterozygous GM6(+/-) combined with KM1-3 or KM1 may be more susceptible to PM infection. The deficit in heterozygotes for GM6 further suggests that GM6 could be under selection likely by malaria infection.
    PLoS ONE 01/2013; 8(1):e53948. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information on trauma-related deaths in low and middle income countries is limited but needed to target public health interventions. Data from a health and demographic surveillance system (HDSS) were examined to characterise such deaths in rural western Kenya. Verbal autopsy data were analysed. Of 11,147 adult deaths between 2003 and 2008, 447 (4%) were attributed to trauma; 71% of these were in males. Trauma contributed 17% of all deaths in males 15 to 24 years; on a population basis mortality rates were greatest in persons over 65 years. Intentional causes accounted for a higher proportion of male than female deaths (RR 2.04, 1.37-3.04) and a higher proportion of deaths of those aged 15 to 65 than older people. Main causes in males were assaults (n=79, 25%) and road traffic injuries (n=47, 15%); and falls for females (n=17, 13%). A significantly greater proportion of deaths from poisoning (RR 5.0, 2.7-9.4) and assault (RR 1.8, 1.2-2.6) occurred among regular consumers of alcohol than among non-regular drinkers. In multivariate analysis, males had a 4-fold higher risk of death from trauma than females (Adjusted Relative Risk; ARR 4.0; 95% CI 1.7-9.4); risk of a trauma death rose with age, with the elderly at 7-fold higher risk (ARR 7.3, 1.1-49.2). Absence of care was the strongest predictor of trauma death (ARR 12.2, 9.4-15.8). Trauma-related deaths were higher among regular alcohol drinkers (ARR 1.5, 1.1-1.9) compared with non-regular drinkers. While trauma accounts for a small proportion of deaths in this rural area with a high prevalence of HIV, TB and malaria, preventive interventions such as improved road safety, home safety strategies for the elderly, and curbing harmful use of alcohol, are available and could help diminish this burden. Improvements in systems to record underlying causes of death from trauma are required.
    PLoS ONE 01/2013; 8(11):e79840. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pregnancy-related (PR) deaths are often a result of direct obstetric complications occurring at childbirth. To estimate the burden of and characterize risk factors for PR mortality, we evaluated deaths that occurred between 2003 and 2008 among women of childbearing age (15 to 49 years) using Health and Demographic Surveillance System data in rural western Kenya. WHO ICD definition of PR mortality was used: "the death of a woman while pregnant or within 42 days of termination of pregnancy, irrespective of the cause of death". In addition, symptoms and events at the time of death were examined using the WHO verbal autopsy methodology. Deaths were categorized as either (i) directly PR: main cause of death was ascribed as obstetric, or (ii) indirectly PR: main cause of death was non-obstetric. Of 3,223 deaths in women 15 to 49 years, 249 (7.7%) were PR. One-third (34%) of these were due to direct obstetric causes, predominantly postpartum hemorrhage, abortion complications and puerperal sepsis. Two-thirds were indirect; three-quarters were attributable to human immunodeficiency virus (HIV/AIDS), malaria and tuberculosis. Significantly more women who died in lower socio-economic groups sought care from traditional birth attendants (p = 0.034), while less impoverished women were more likely to seek hospital care (p = 0.001). The PR mortality ratio over the six years was 740 (95% CI 651-838) per 100,000 live births, with no evidence of reduction over time (χ(2) linear trend = 1.07; p = 0.3). These data supplement current scanty information on the relationship between infectious diseases and poor maternal outcomes in Africa. They indicate low uptake of maternal health interventions in women dying during pregnancy and postpartum, suggesting improved access to and increased uptake of skilled obstetric care, as well as preventive measures against HIV/AIDS, malaria and tuberculosis among all women of childbearing age may help to reduce pregnancy-related mortality.
    PLoS ONE 01/2013; 8(7):e68733. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KEMRI/Centers for Disease Control and Prevention (CDC) Health and Demographic Surveillance System (HDSS) is located in Rarieda, Siaya and Gem Districts (Siaya County), lying northeast of Lake Victoria in Nyanza Province, western Kenya. The KEMRI/CDC HDSS, with approximately 220 000 inhabitants, has been the foundation for a variety of studies, including evaluations of insecticide-treated bed nets, burden of diarrhoeal disease and tuberculosis, malaria parasitaemia and anaemia, treatment strategies and immunological correlates of malaria infection, and numerous HIV, tuberculosis, malaria and diarrhoeal disease treatment and vaccine efficacy and effectiveness trials for more than a decade. Current studies include operations research to measure the uptake and effectiveness of the programmatic implementation of integrated malaria control strategies, HIV services, newly introduced vaccines and clinical trials. The HDSS provides general demographic and health information (such as population age structure and density, fertility rates, birth and death rates, in- and out-migrations, patterns of health care access and utilization and the local economics of health care) as well as disease- or intervention-specific information. The HDSS also collects verbal autopsy information on all deaths. Studies take advantage of the sampling frame inherent in the HDSS, whether at individual, household/compound or neighbourhood level.
    International Journal of Epidemiology 08/2012; 41(4):977-87. · 6.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the relationship between Plasmodium falciparum malaria transmission and health outcomes requires accurate estimates of exposure to infectious mosquitoes. However, measures of exposure such as mosquito density and entomological inoculation rate (EIR) are generally aggregated over large areas and time periods, biasing the outcome-exposure relationship. There are few studies examining the extent and drivers of local variation in malaria exposure in endemic areas. We describe the spatio-temporal dynamics of malaria transmission intensity measured by mosquito density and EIR in the KEMRI/CDC health and demographic surveillance system using entomological data collected during 2002-2004. Geostatistical zero inflated binomial and negative binomial models were applied to obtain location specific (house) estimates of sporozoite rates and mosquito densities respectively. Model-based predictions were multiplied to estimate the spatial pattern of annual entomological inoculation rate, a measure of the number of infective bites a person receive per unit of time. The models included environmental and climatic predictors extracted from satellite data, harmonic seasonal trends and parameters describing space-time correlation. Anopheles gambiae s.l was the main vector species accounting for 86% (n=2309) of the total mosquitoes collected with the remainder being Anopheles funestus. Sixty eight percent (757/1110) of the surveyed houses had no mosquitoes. Distance to water bodies, vegetation and day temperature were strongly associated with mosquito density. Overall annual point estimates of EIR were 6.7, 9.3 and 9.6 infectious bites per annum for 2002, 2003 and 2004 respectively. Monthly mosquito density and EIR varied over the study period peaking in May during the wet season each year. The predicted and observed densities of mosquitoes and EIR showed a strong seasonal and spatial pattern over the study area. Spatio-temporal maps of malaria transmission intensity obtained in this study are not only useful in understanding variability in malaria epidemiology over small areas but also provide a high resolution exposure surface that can be used to analyse the impact of transmission on malaria related and all-cause morbidity and mortality.
    Parasites & Vectors 04/2012; 5:86. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to sulphadoxine-pyrimethamine (SP) in Plasmodium falciparum parasites is associated with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes and has spread worldwide. SP remains the recommended drug for intermittent preventive treatment for malaria in pregnancy (IPTp) and information on population prevalence of the SP resistance molecular markers in pregnant women is limited. Temporal trends of SP resistance molecular markers were investigated in 489 parasite samples collected from pregnant women at delivery from three different observational studies between 1996 and 2009 in Kenya, where SP was adopted for both IPTp and case treatment policies in 1998. Using real-time polymerase chain reaction, pyrosequencing and direct sequencing, 10 single-nucleotide polymorphisms (SNPs) of SP resistance molecular markers were assayed. The prevalence of quintuple mutant (dhfr N51I/C59R/S108N and dhps A437G/K540E combined genotype) increased from 7% in the first study (1996-2000) to 88% in the third study (2008-2009). When further stratified by sample collection year and adoption of IPTp policy, the prevalence of the quintuple mutant increased from 2.4% in 1998 to 44.4% three years after IPTp policy adoption, seemingly in parallel with the increase in percentage of SP use in pregnancy. However, in the 1996-2000 study, more mutations in the combined dhfr/dhps genotype were associated with SP use during pregnancy only in univariable analysis and no associations were detected in the 2002-2008 and 2008-2009 studies. In addition, in the 2008-2009 study, 5.3% of the parasite samples carried the dhps triple mutant (A437G/K540E/A581G). There were no differences in the prevalence of SP mutant genotypes between the parasite samples from HIV + and HIV- women over time and between paired peripheral and placental samples. There was a significant increase in dhfr/dhps quintuple mutant and the emergence of new genotype containing dhps 581 in the parasites from pregnant women in western Kenya over 13 years. IPTp adoption and SP use in pregnancy only played a minor role in the increased drug-resistant parasites in the pregnant women over time. Most likely, other major factors, such as the high prevalence of resistant parasites selected by the use of SP for case management in large non-pregnant population, might have contributed to the temporally increased prevalence of SP resistant parasites in pregnant women. Further investigations are needed to determine the linkage between SP drug resistance markers and efficacy of IPTp-SP.
    Malaria Journal 04/2012; 11:134. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peter Bloland and colleagues from the US CDC lay out the agency's priorities for health systems strengthening efforts.
    PLoS Medicine 04/2012; 9(4):e1001199. · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute gastroenteritis (AGE) remains a common cause of clinic visits and hospitalizations in the United States, but the etiology is rarely determined. We performed a prospective, multicenter emergency department-based study of adults with AGE. Subjects were interviewed on presentation and 3-4 weeks later. Serum samples, rectal swab specimens, and/or whole stool specimens were collected at presentation, and serum was collected 3-4 weeks later. Fecal specimens were tested for a comprehensive panel of viral, bacterial, and parasitic pathogens; serum was tested for calicivirus antibodies. Pathogens were detected in 25% of 364 subjects, including 49% who provided a whole stool specimen. The most commonly detected pathogens were norovirus (26%), rotavirus (18%), and Salmonella species (5.3%). Pathogens were detected significantly more often from whole stool samples versus a rectal swab specimen alone. Nine percent of subjects who provided whole stool samples had >1 pathogen identified. Viruses, especially noroviruses, play a major role as agents of severe diarrhea in adults. Further studies to confirm the unexpectedly high prevalence of rotaviruses and to explore the causes of illness among patients from whom a pathogen cannot be determined are needed. Studies of enteric pathogens should require the collection of whole stool samples.
    The Journal of Infectious Diseases 03/2012; 205(9):1374-81. · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the origin and spread of mutations associated with drug resistance, especially in the context of combination therapy, will help guide strategies to halt and prevent the emergence of resistance. Unfortunately, studies have assessed these complex processes when resistance is already highly prevalent. Even further, information on the evolutionary dynamics leading to multidrug-resistant parasites is scattered and limited to areas with low or seasonal malaria transmission. This study describes the dynamics of strong selection for mutations conferring resistance against sulphadoxine-pyrimethamine (SP), a combination therapy, in western Kenya between 1992 and 1999, just before SP became first-line therapy (1999). Importantly, the study is based on longitudinal data, which allows for a comprehensive analysis that contrasts with previous cross-sectional studies carried out in other endemic regions. This study used 236 blood samples collected between 1992 and 1999 in the Asembo Bay area of Kenya. Pyrosequencing was used to determine the alleles of dihydrofolate reductase (dhfr) and dihydropterote synthase (dhps) genes. Microsatellite alleles spanning 138 kb around dhfr and dhps, as well as, neutral markers spanning approximately 100 kb on chromosomes 2 and 3 were characterized. By 1992, the South-Asian dhfr triple mutant was already spreading, albeit in low frequency, in this holoendemic Kenyan population, prior to the use of SP as a first-line therapy. Additionally, dhfr triple mutant alleles that originated independently from the predominant Southeast Asian lineage were present in the sample set. Likewise, dhps double mutants were already present as early as 1992. There is evidence for soft selective sweeps of two dhfr mutant alleles and the possible emergence of a selective sweep of double mutant dhps alleles between 1992 and 1997. The longitudinal structure of the dataset allowed estimation of selection pressures on various dhfr and dhps mutants relative to each other based on a theoretical model tailored to P. falciparum. The data indicate that drug selection acted differently on the resistant alleles of dhfr and dhps, as evidenced by fitness differences. Thus a combination drug therapy such as SP, by itself, does not appear to select for "multidrug"-resistant parasites in areas with high recombination rate. The complexity of these observations emphasizes the importance of population-based studies to evaluate the effects of strong drug selection on Plasmodium falciparum populations.
    Malaria Journal 03/2012; 11:77. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Targeted global efforts to improve survival of young adults need information on mortality trends; contributions from health and demographic surveillance system (HDSS) are required. METHODS AND FINDINGS: This study aimed to explore changing trends in deaths among adolescents (15-19 years) and young adults (20-24 years), using census and verbal autopsy data in rural western Kenya using a HDSS. Mid-year population estimates were used to generate all-cause mortality rates per 100,000 population by age and gender, by communicable (CD) and non-communicable disease (NCD) causes. Linear trends from 2003 to 2009 were examined. In 2003, all-cause mortality rates of adolescents and young adults were 403 and 1,613 per 100,000 population, respectively, among females; and 217 and 716 per 100,000, respectively, among males. CD mortality rates among females and males 15-24 years were 500 and 191 per 100,000 (relative risk [RR] 2.6; 95% confidence intervals [CI] 1.7-4.0; p<0.001). NCD mortality rates in same aged females and males were similar (141 and 128 per 100,000, respectively; p = 0.76). By 2009, young adult female all-cause mortality rates fell 53% (χ(2) for linear trend 30.4; p<0.001) and 61.5% among adolescent females (χ(2) for linear trend 11.9; p<0.001). No significant CD mortality reductions occurred among males or for NCD mortality in either gender. By 2009, all-cause, CD, and NCD mortality rates were not significantly different between males and females, and among males, injuries equalled HIV as the top cause of death. CONCLUSIONS: This study found significant reductions in adolescent and young adult female mortality rates, evidencing the effects of targeted public health programmes, however, all-cause and CD mortality rates among females remain alarmingly high. These data underscore the need to strengthen programmes and target strategies to reach both males and females, and to promote NCD as well as CD initiatives to reduce the mortality burden amongst both gender.
    PLoS ONE 01/2012; 7(11):e47017. · 3.73 Impact Factor

Publication Stats

9k Citations
1,081.97 Total Impact Points

Institutions

  • 2013
    • KEMRI / CDC Research and Public Health Collaboration
      Winam, Kisumu, Kenya
  • 1993–2013
    • Centers for Disease Control and Prevention
      • • Division of Parasitic Diseases and Malaria
      • • Division of Vector-Borne Diseases
      • • Division of Bacterial Diseases
      • • National Center for Emerging and Zoonotic Infectious Diseases
      Atlanta, MI, United States
  • 2012
    • Liverpool School of Tropical Medicine
      Liverpool, England, United Kingdom
  • 2011
    • PATH
      Seattle, Washington, United States
    • CRESIB Barcelona Centre for International Health Research
      • Barcelona Centre for International Health Research
      Barcino, Catalonia, Spain
  • 2010
    • Swiss Tropical and Public Health Institute
      Bâle, Basel-City, Switzerland
    • London School of Hygiene and Tropical Medicine
      Londinium, England, United Kingdom
    • University of Michigan
      • Department of Epidemiology
      Ann Arbor, MI, United States
  • 2004–2010
    • Kenya Medical Research Institute
      • Centre for Global Health Research
      Nairobi, Nairobi Province, Kenya
  • 2006–2009
    • University of Amsterdam
      • Faculty of Medicine AMC
      Amsterdam, North Holland, Netherlands
  • 2008
    • KEMRI-Wellcome Trust Research Programme
      Kilifi, Kilifi, Kenya
  • 2004–2008
    • Kenya Centers for Disease Control and Prevention
      Winam, Kisumu, Kenya
  • 2007
    • Academisch Medisch Centrum Universiteit van Amsterdam
      • Academic Medical Center
      Amsterdam, North Holland, Netherlands
  • 1998–2006
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
  • 2005
    • Tulane University
      New Orleans, Louisiana, United States
  • 2001
    • Harvard University
      Cambridge, Massachusetts, United States
    • State of California
      California City, California, United States
    • University of California, Los Angeles
      • Department of Emergency Medicine
      Los Angeles, CA, United States
  • 2000
    • University of California, San Francisco
      • Division of General Internal Medicine
      San Francisco, CA, United States
  • 1999
    • University of California, San Diego
      • Department of Pediatrics
      San Diego, CA, United States
    • University of Georgia
      • Department of Food Science and Technology
      Athens, GA, United States
  • 1994
    • Ministry of Health, Malawi
      Lilongwe, Central Region, Malawi