Sonia Hem

Université de Montpellier 1, Montpelhièr, Languedoc-Roussillon, France

Are you Sonia Hem?

Claim your profile

Publications (15)82.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the Leishmania donovani chaperone cyclophilin 40 (LdCyP40) for infection. Targeted replacement of LdCyP40 had no effect on parasite viability, axenic amastigote differentiation, and resistance to various forms of environmental stress in culture, suggesting important functional redundancy to other parasite chaperones. However, ultra-structural analyses and video microscopy of cyp40-/- promastigotes uncovered important defects in cell shape, organization of the subpellicular tubulin network and motility at stationary growth phase. More importantly, cyp40-/- parasites were unable to establish intracellular infection in murine macrophages and were eliminated during the first 24h post infection. Surprisingly, cyp40-/- infectivity was restored in complemented parasites expressing a CyP40 mutant of the unique S274 phosphorylation site. Together our data reveal non-redundant CyP40 functions in parasite cytoskeletal remodeling relevant for the development of infectious parasites in vitro independent of its phosphorylation status, and provide a framework for the genetic analysis of Leishmania-specific phosphorylation sites and their role in regulating parasite protein function.
    Molecular Microbiology 05/2014; · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An excess of NaCl in the soil is detrimental for plant growth. It interferes with mineral nutrition and water uptake and leads to accumulation of toxic ions in the plant. Understanding the response of roots to NaCl stress may facilitate the development of crops with increased tolerance to this and other stresses. Since controls achieved at the post-translational level are of critical importance for regulating protein function, the present work used a robust label-free quantitative proteomic methodology to quantify phosphorylation events that affect root membrane proteins in Arabidopsis, in response to short term (up to 2h) NaCl treatments. This work identified 302 proteotypic phosphopeptides including 77 novel phosphorylated sites. NaCl treatment significantly altered the abundance of 74 phosphopeptides, giving novel insights into the regulation of major classes of membrane proteins including ATPases, sodium transporters and aquaporins. The data provide a unique access to phosphorylation reprogramming of ionic equilibrium in plant cells under NaCl stress. The use of predictive bioinformatic tools for kinase motifs suggested that root membrane proteins are substrates of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG) and protein kinase C (PKC) families, also called AGC kinases, arguing for an important role of lipid signaling in abiotic stress responses. It also pointed to cross-talks between protein kinase families during NaCl stress. This article is protected by copyright. All rights reserved.
    Proteomics 02/2014; · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invasive pulmonary aspergillosis remains a matter of great concern in oncology/haematology, intensive care units and organ transplantation departments. Despite the availability of various diagnostic tools with attractive features, new markers of infection are required for better medical care. We therefore looked for potential pulmonary biomarkers of aspergillosis, by carrying out two-dimensional (2D) gel electrophoresis comparing the proteomes of bronchial-alveolar lavage fluids (BALF) from infected rats and from control rats presenting non-specific inflammation, both immunocompromised. A bioinformatic analysis of the 2D-maps revealed significant differences in the abundance of 20 protein spots (ANOVA P-value<0.01; q-value<0.03; power>0.8). One of these proteins, identified by mass spectrometry, was considered of potential interest: inter-alpha-inhibitor H4 heavy-chain (ITIH4), characterised for the first time in this infectious context. Western blotting confirmed its overabundance in all infected BALF, particularly at early stages of murine aspergillosis. Further investigations were carried on rat serum, and confirmed that ITIH4 levels increased during experimental aspergillosis. Preliminary results in human samples strengthened this trend. To our knowledge, this is the first description of the involvement of ITIH4 in aspergillosis.
    International journal of medical microbiology: IJMM 12/2013; · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments which modulate root hydraulics, in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots) or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport, except for sucrose supply to dark-grown plants or phosphate resupply to phosphate-starved plant which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 over 13 Plasma membrane Intrinsic Proteins (PIP) aquaporin isoforms, 4 of the 10 Tonoplast Intrinsic Proteins (TIP) isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation and acetylation. A total of 55 aquaporin peptides displayed significant changes according to treatments and enabled to identify specific and as yet unknown patterns of response to stimuli. The data show that regulation of PIP and TIP abundance was involved in response to a few treatments (i.e. NaCl, NO and nitrate starvation) whereas changes in phosphorylation status of PIP aquaporins was positively correlated to changes in root hydraulic conductivity on the whole set of treatments. The identification of in vivo deamidated forms of aquaporins, and their stimulus-induced changes in abundance, may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post-translational events triggered by environmental constraints and their possible role in regulating the plant water status.
    Molecular &amp Cellular Proteomics 09/2013; · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.
    The Plant Cell 03/2013; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rennet-induced coagulation of bovine milk is a complex mechanism in which chymosin specifically hydrolyzes κ-casein, the protein responsible for the stability of the casein micelle. In equine milk, this mechanism is still unclear, and the protein targets of chymosin are unknown. To reveal the proteins involved, the rennetability of equine milk by calf chymosin was examined using gel-free and gel-based proteomic analysis and compared to bovine milk. RP-HPLC analysis of bovine and equine milks showed the release of several peptides following chymosin incubation. The hydrolyses of equine and bovine casein by chymosin were different, and the major peptides produced from equine milk were identified by mass spectrometry as fragments of β-casein. Using two-dimensional electrophoresis, equine β-casein was confirmed as the main target of calf chymosin over 24 h at 30 °C and pH 6.5. The gel-based analysis of equine milk discriminated between the different individual proteins and provided information on the range of isoforms of each protein as a result of post-translational modifications, as well as positively identified for the first time several isoforms of κ-casein. In comparison to bovine milk, κ-casein isoforms in equine milk were not involved in chymosin-induced coagulation. The intensity of equine β-casein spots decreased following chymosin addition, but at a slower rate than bovine κ-casein.
    Journal of Agricultural and Food Chemistry 03/2013; · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Genome-wide statistics established that long intrinsically disordered regions (over 30 residues) are predicted in a large part of proteins in all eukaryotes, with a higher ratio in trans-membrane proteins. At functional level, such unstructured and flexible regions were suggested for years to favour phosphorylation events. In plants, despite increasing evidence of the regulation of transport and signalling processes by phosphorylation events, only few data are available without specific information regarding plasma membrane proteins, especially at proteome scale. RESULTS: Using a dedicated phosphoproteomic workflow, 75 novel and unambiguous phosphorylation sites were identified in Arabidopsis plasma membrane. Bioinformatics analysis showed that this new dataset concerned mostly integral proteins involved in key functions of the plasma membrane (such as transport and signal transduction, including protein phosphorylation). It thus expanded by 15% the directory of phosphosites previously characterized in signalling and transport proteins. Unexpectedly, 66% of phosphorylation sites were predicted to be located outside long intrinsically disordered regions. This result was further corroborated by analysis of publicly available data for the plasma membrane. CONCLUSIONS: The new phosphoproteomics data presented here, with published datasets and functional annotation, suggest a previously unexpected topology of phosphorylation in the plant plasma membrane proteins. The significance of these new insights into the so far overlooked properties of the plant plasma membrane phosphoproteome and the long disordered regions is discussed.
    Proteome Science 10/2012; 10(1):62. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secreted proteins play a key role in cell signaling and communication. We recently showed that ionizing radiations induced a delayed cell death of breast cancer cells, mediated by the death receptor pathways through the expression of soluble forms of "death ligands." Using the same cell model, the objective of our work was the identification of diffusible factors, secreted following cell irradiation, potentially involved in cell death signaling. Differential proteomic analysis of conditioned media using 2DE resulted in detection of numerous spots that were significantly modulated following cell irradiation. The corresponding proteins were identified using MALDI-TOF MS and LC-MS/MS approaches. Interestingly, five isoforms of cyclophilin A were observed as increased in conditioned medium of irradiated cells. These isoforms differed in isoelectric points and in accumulation levels. An increase of cyclophilin A secretion was confirmed by Western blotting of conditioned media of irradiated or radiosentive mammary cells. These isoforms displayed an interesting pattern of protein maturation and post-translational modifications, including an alternating removal of N-terminal methionine, associated with a combination of acetylations and methylations. The role of the protein is discussed in relation with its potential involvement in the mechanisms of intercells relationships and radiosensitivity.
    Proteomics 05/2012; 12(11):1756-66. · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate chromosome segregation relies upon a mitotic checkpoint that monitors kinetochore attachment toward opposite spindle poles before enabling chromosome disjunction [1]. The MPS1/TTK protein kinase is a core component of the mitotic checkpoint that lies upstream of MAD2 and BubR1 both at the kinetochore and in the cytoplasm [2, 3]. To gain insight into the mechanisms underlying the regulation of MPS1 kinase, we undertook the identification of Xenopus MPS1 phosphorylation sites by mass spectrometry. We mapped several phosphorylation sites onto MPS1 and we show that phosphorylation of S283 in the noncatalytic region of MPS1 is required for full kinase activity. This phosphorylation potentiates MPS1 catalytic efficiency without impairing its affinity for the substrates. By using Xenopus egg extracts depleted of endogenous MPS1 and reconstituted with single point mutants, we show that phosphorylation of S283 is essential to activate the mitotic checkpoint. This phosphorylation does not regulate the localization of MPS1 to the kinetochore but is required for the recruitment of MAD1/MAD2, demonstrating its role at the kinetochore. Constitutive phosphorylation of S283 lowers the number of kinetochores required to hold the checkpoint, which suggests that CDK-dependent phosphorylation of MPS1 is essential to sustain the mitotic checkpoint when few kinetochores remain unattached.
    Current biology: CB 02/2012; 22(4):289-95. · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters.
    Proteomics 02/2011; 11(9):1789-97. · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pathogenic protozoa of the genus Leishmania undergo various developmental transitions during the infectious cycle that are triggered by changes in the host environment. How these parasites sense, transduce, and respond to these signals is only poorly understood. Here we used phosphoproteomic approaches to monitor signaling events in L. donovani axenic amastigotes, which may be important for intracellular parasite survival. LC-ESI-MS/MS analysis of IMAC-enriched phosphoprotein extracts identified 445 putative phosphoproteins in two independent biological experiments. Functional enrichment analysis allowed us to gain insight into parasite pathways that are regulated by protein phosphorylation and revealed significant enrichment in our data set of proteins whose biological functions are associated with protein turn-over, stress response, and signal transduction. LC-ESI-MS/MS analysis of TiO(2)-enriched phosphopeptides confirmed these results and identified 157 unique phosphopeptides covering 181 unique phosphorylation sites in 126 distinct proteins. Investigation of phosphorylation site conservation across related trypanosomatids and higher eukaryotes by multiple sequence alignment and cluster analysis revealed L. donovani-specific phosphoresidues in highly conserved proteins that share significant sequence homology to orthologs of the human host. These unique phosphorylation sites reveal important differences between host and parasite biology and post-translational protein regulation, which may be exploited for the design of novel anti-parasitic interventions.
    Proteomics 09/2010; 10(21):3868-83. · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania is exposed to a sudden increase in environmental temperature during the infectious cycle that triggers stage differentiation and adapts the parasite phenotype to intracellular survival in the mammalian host. The absence of classical promoter-dependent mechanisms of gene regulation and constitutive expression of most of the heat-shock proteins (HSPs) in these human pathogens raise important unresolved questions as to regulation of the heat-shock response and stage-specific functions of Leishmania HSPs. Here we used a gel-based quantitative approach to assess the Leishmania donovani phosphoproteome and revealed that 38% of the proteins showed significant stage-specific differences, with a strong focus of amastigote-specific phosphoproteins on chaperone function. We identified STI1/HOP-containing chaperone complexes that interact with ribosomal client proteins in an amastigote-specific manner. Genetic analysis of STI1/HOP phosphorylation sites in conditional sti1(-/-) null mutant parasites revealed two phosphoserine residues essential for parasite viability. Phosphorylation of the major Leishmania chaperones at the pathogenic stage suggests that these proteins may be promising drug targets via inhibition of their respective protein kinases.
    Proceedings of the National Academy of Sciences 05/2010; 107(18):8381-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporins form a family of water and solute channel proteins and are present in most living organisms. In plants, aquaporins play an important role in the regulation of root water transport in response to abiotic stresses. In this work, we investigated the role of phosphorylation of plasma membrane intrinsic protein (PIP) aquaporins in the Arabidopsis thaliana root by a combination of quantitative mass spectrometry and cellular biology approaches. A novel phosphoproteomics procedure that involves plasma membrane purification, phosphopeptide enrichment with TiO(2) columns, and systematic mass spectrometry sequencing revealed multiple and adjacent phosphorylation sites in the C-terminal tail of several AtPIPs. Six of these sites had not been described previously. The phosphorylation of AtPIP2;1 at two C-terminal sites (Ser(280) and Ser(283)) was monitored by an absolute quantification method and shown to be altered in response to treatments of plants by salt (NaCl) and hydrogen peroxide. The two treatments are known to strongly decrease the water permeability of Arabidopsis roots. To investigate a putative role of Ser(280) and Ser(283) phosphorylation in aquaporin subcellular trafficking, AtPIP2;1 forms mutated at either one of the two sites were fused to the green fluorescent protein and expressed in transgenic plants. Confocal microscopy analysis of these plants revealed that, in resting conditions, phosphorylation of Ser(283) is necessary to target AtPIP2;1 to the plasma membrane. In addition, an NaCl treatment induced an intracellular accumulation of AtPIP2;1 by exerting specific actions onto AtPIP2;1 forms differing in their phosphorylation at Ser(283) to induce their accumulation in distinct intracellular structures. Thus, the present study documents stress-induced quantitative changes in aquaporin phosphorylation and establishes for the first time a link with plant aquaporin subcellular localization.
    Molecular &amp Cellular Proteomics 07/2008; 7(6):1019-30. · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The generation of novel subsets of phosphorylation sites is needed to complement the present Arabidopsis plasma membrane phosphoprotein repertoire, where several families of proteins are under-represented. In this work, different combinations of chromatographic steps were first compared for capacity to resolve model phosphopeptides before characterisation from PSD fragments in MALDI MS/MS. Nearly half of the phosphorylation sites detected in the Arabidopsis plasmalemma using the optimised procedure were novel, and two-thirds of protein accessions identified secondary active transporters. These included phosphate/H(+) symporters, ammonium and nitrate transporters, different alkali cation exchangers, a urea/H(+) symporter, a glucose transporter, a purine permease, and peptide transporters. There has been previous functional evidence for phosphorylation of only a minority of these, the regulation of others having been essentially investigated at the transcriptional level. The demonstration of active phosphorylation sites in such a diverse set of secondary transporter families suggests that this regulation level plays a major role in the response of plants to nutrient availability.
    Biochemical and Biophysical Research Communications 12/2007; 363(2):375-80. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of phosphoproteome on a global scale represents one of the challenges in the post-genomic era. Here, we propose an integrated procedure starting from the crude protein extract, that consists of sequential purification steps, and ending up in the identification of phosphorylation sites. This involves (i) an enrichment in phosphoproteins with a commercially available chromatography matrix, (ii) a 2-D gel analysis of the enriched fraction followed by the selective staining with the phosphospecific fluorescent dye Pro-Q Diamond, (iii) a phosphopeptide capture, from the tryptic lysate of 2-D spots, using IMAC micro-columns. In the end, the identification of the phosphoproteins and their corresponding phosphorylation sites were achieved by MALDI-TOF-TOF spectrometry. The method was applied to contrasting samples prepared from cell suspension cultures of Arabidopsis thaliana and roots of Medicago truncatula. The results obtained, demonstrated the robustness of the combination of two enrichment stages, sequentially at the protein and at the peptide levels, to analyse phosphoproteins in plants.
    Phytochemistry 11/2006; 67(20):2208-14. · 3.35 Impact Factor

Publication Stats

195 Citations
82.98 Total Impact Points

Institutions

  • 2014
    • Université de Montpellier 1
      Montpelhièr, Languedoc-Roussillon, France
  • 2012
    • Montpellier SupAgro
      Montpelhièr, Languedoc-Roussillon, France
  • 2010
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
    • Institut Pasteur
      Lutetia Parisorum, Île-de-France, France
  • 2007
    • French National Institute for Agricultural Research
      Lutetia Parisorum, Île-de-France, France