Lorenz Studer

Memorial Sloan-Kettering Cancer Center, New York City, New York, United States

Are you Lorenz Studer?

Claim your profile

Publications (109)1518.41 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.
    Development (Cambridge, England). 02/2015; 142(4):633-43.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.
    Nature Biotechnology 01/2015; · 39.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell engineering approach, we show that aggressive cancers derived from human or murine induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are strikingly sensitive to temporary MYC blockade. On the other hand, differentiated tissues derived from human or mouse iPSCs can readily tolerate temporary MYC inactivation. In cancer cells, endogenous MYC is required to maintain the metabolic and epigenetic functions of the embryonic and cancer-specific pyruvate kinase M2 isoform (PKM2). In summary, our results implicate PKM2 in cancer's increased MYC dependence and indicate dominant MYC inhibition as a cancer-selective fail-safe for stem cell therapies.
    Cell reports. 09/2014;
  • Source
    Justine Miller, Lorenz Studer
    Aging 04/2014; · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subsets of rodent neurons are reported to express major histocompatibility complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell-derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T-cell-mediated cytotoxic attack.
    Nature Communications 04/2014; 5:3633. · 10.74 Impact Factor
  • Viviane Tabar, Lorenz Studer
    [Show abstract] [Hide abstract]
    ABSTRACT: After years of incremental progress, several recent studies have succeeded in deriving disease-relevant cell types from human pluripotent stem cell (hPSC) sources. The prospect of an unlimited cell source, combined with promising preclinical data, indicates that hPSC technology may be on the verge of clinical translation. In this Review, we discuss recent progress in directed differentiation, some of the new technologies that have facilitated the success of hPSC therapies and the remaining hurdles on the road towards developing hPSC-based cell therapies.
    Nature Reviews Genetics 01/2014; 15(2):82-92. · 39.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
    Journal of Visualized Experiments 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson's disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.
    Cell stem cell 12/2013; 13(6):691-705. · 23.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been considerable progress in obtaining engraftable embryonic stem (ES) cell-derived midbrain dopamine neurons for cell replacement therapy in models of Parkinson's disease; however, limited integration and striatal reinnervation of ES-derived grafts remain a major challenge for future clinical translation. In this paper, we show that enhanced expression of polysialic acid results in improved graft efficiency in correcting behavioral deficits in Parkinsonian mice. This result is accompanied by two potentially relevant cellular changes: greater survival of transplanted ES-derived dopamine neurons and robust sprouting of tyrosine hydroxylase-positive processes into host tissue. Because the procedures used to enhance polysialic acid are easily translated to other cell types and species, this approach may represent a general strategy to improve graft integration in cell-based therapies.
    STEM CELLS TRANSLATIONAL MEDICINE 12/2013; 3(1). · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neural crest (NC) is a transient population of multipotent cells giving rise to the peripheral nervous system, skin pigmentation, heart, and facial mesenchyme. The broad cell fate potential of NC makes it an attractive cell fate to derive from human pluripotent stem cells (hPSCs) for exploring embryonic development, modeling disease, and generating cells for transplantation. Here, we discuss recent publications and methods for efficiently differentiating hPSCs into NC. We also provide methods to direct NC into two different terminal fates: melanocytes and sensory neurons.
    Methods in molecular biology (Clifton, N.J.) 12/2013; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease.
    Cell Reports 11/2013; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major barrier in understanding nervous system development is modeling the cellular interactions that form the human brain. Recently, in the journal Nature, Lancaster et al. (2013) established a protocol for culturing pluripotent stem cell (PSC)-derived "cerebral organoids" that mimics the developing human brain's cellular organization, segregates into distinct brain regions, and models microcephaly.
    Cell stem cell 10/2013; 13(4):377-378. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.
    Cell stem cell 05/2013; 12(5):559-72. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocytes are pigment-producing cells of neural crest (NC) origin that are responsible for protecting the skin against UV irradiation. Pluripotent stem cell (PSC) technology offers a promising approach for studying human melanocyte development and disease. Here, we report that timed exposure to activators of WNT, BMP, and EDN3 signaling triggers the sequential induction of NC and melanocyte precursor fates under dual-SMAD-inhibition conditions. Using a SOX10::GFP human embryonic stem cell (hESC) reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human NC induction. Subsequent maturation of hESC-derived melanocytes yields pure populations that match the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak syndrome and Chediak-Higashi syndrome patient-specific induced PSCs (iPSCs) faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during NC induction and enable the generation of pure populations of human iPSC-derived melanocytes for faithful modeling of pigmentation disorders.
    Cell Reports 04/2013; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal engraftment by oligodendrocyte progenitor cells (OPCs) permits the myelination of the congenitally dysmyelinated brain. To establish a potential autologous source of these cells, we developed a strategy by which to differentiate human induced pluripotent stem cells (hiPSCs) into OPCs. From three hiPSC lines, as well as from human embryonic stem cells (hESCs), we generated highly enriched OLIG2(+)/PDGFRα(+)/NKX2.2(+)/SOX10(+) human OPCs, which could be further purified using fluorescence-activated cell sorting. hiPSC OPCs efficiently differentiated into both myelinogenic oligodendrocytes and astrocytes, in vitro and in vivo. Neonatally engrafted hiPSC OPCs robustly myelinated the brains of myelin-deficient shiverer mice and substantially increased their survival. The speed and efficiency of myelination by hiPSC OPCs was higher than that previously observed using fetal-tissue-derived OPCs, and no tumors from these grafts were noted as long as 9 months after transplant. These results suggest the potential utility of hiPSC-derived OPCs in treating disorders of myelin loss.
    Cell stem cell 02/2013; 12(2):252-64. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Figure optionsView in workspaceDownload full-size imageDownload as PowerPoint slide
  • Source
    Sabrina C Desbordes, Lorenz Studer
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing use of human pluripotent stem cells (hPSCs) as a source of cells for drug discovery, cytotoxicity assessment and disease modeling requires their adaptation to large-scale culture conditions and screening formats. Here, we describe a simple and robust protocol for the adaptation of human embryonic stem cells (hESCs) to high-throughput screening (HTS). This protocol can also be adapted to human induced pluripotent stem cells (hiPSCs) and high-content screening (HCS). We also describe a 7-d assay to identify compounds with an effect on hESC self-renewal and differentiation. This assay can be adapted to a variety of applications. The procedure involves the culture expansion of hESCs, their adaptation to 384-well plates, the addition of small molecules or other factors, and finally data acquisition and processing. In this protocol, the optimal number of hESCs plated in 384-well plates has been adapted to HTS/HCS assays of 7 d.
    Nature Protocol 12/2012; 8(1):111-30. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patient-specific induced pluripotent stem cells (iPSCs) represent a novel system for modeling human genetic disease and could provide a source of cells for large-scale drug-discovery screens. Here we demonstrate the feasibility of performing a primary screen in neural crest precursors derived from iPSCs that were generated from individuals with familial dysautonomia (FD), a rare, fatal genetic disorder affecting neural crest lineages. We tested 6,912 small-molecule compounds and characterized eight that rescued expression of IKBKAP, the gene responsible for FD. One of the hits, SKF-86466, was found to induce IKBKAP transcription through modulation of intracellular cAMP levels and PKA-dependent CREB phosphorylation. SKF-86466 also rescued IKAP protein expression and the disease-specific loss of autonomic neuronal marker expression. Our data implicate alpha-2 adrenergic receptor activity in regulating IKBKAP expression and demonstrate that small-molecule discovery using an iPSC-based disease model can identify candidate drugs for potential therapeutic intervention.
    Nature Biotechnology 11/2012; · 39.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of toll-like receptor 3 (TLR3) immunity are prone to HSV-1 encephalitis (HSE). We tested the hypothesis that the pathogenesis of HSE involves non-haematopoietic CNS-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of interferon-β (IFN-β) and/or IFN-λ1 in response to stimulation by the dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele showed that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was rescued further by treatment with exogenous IFN-α or IFN-β ( IFN-α/β) but not IFN-λ1. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3-pathway deficiencies.
    Nature 10/2012; · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer great promise in regenerative medicine and disease modeling due to their unlimited self-renewal and broad differentiation capacity. There is evidence that the growth properties and critical signaling pathways differ between murine and human ESCs; therefore, it is essential to perform functional studies to test the putatively conserved mechanisms of pluripotent stem cell self-renewal between species. Previously, we identified the transcription factor Zfx as a key regulator of self-renewal in murine ESCs. Here we extend those findings to human ESCs. ZFX knockdown in hESCs hindered clonal growth and decreased colony size after serial replating. ZFX overexpression enhanced clone formation in the presence of Y-27632, increased colony size at low density and decreased expression of differentiation-related genes in human ESCs. ZFX-overexpressing hESCs resisted spontaneous differentiation but could be directed to differentiate into endodermal and neural cell fates when provided with the appropriate cues. Thus, ZFX acts as a molecular rheostat regulating the balance between self-renewal and differentiation in hESCs, revealing the close evolutionary conservation of the self-renewal mechanisms in murine and human ESCs.
    PLoS ONE 08/2012; 7(8):e42302. · 3.53 Impact Factor

Publication Stats

8k Citations
1,518.41 Total Impact Points


  • 2000–2014
    • Memorial Sloan-Kettering Cancer Center
      • • Division of Developmental Biology
      • • Department of Radiology
      New York City, New York, United States
  • 2013
    • Harvard University
      • Department of Stem Cell and Regenerative Biology
      Cambridge, Massachusetts, United States
  • 2012
    • Johns Hopkins University
      Baltimore, Maryland, United States
  • 2005–2008
    • McLean Hospital
      Cambridge, Massachusetts, United States
  • 2007
    • Hanyang University
      • Major in Microbiology
      Ansan, Gyeonggi, South Korea
  • 2006
    • City of Hope National Medical Center
      • Department of Neurosciences
      Duarte, CA, United States
  • 2003–2004
    • Weill Cornell Medical College
      • Department of Neurology and Neuroscience
      New York City, New York, United States
  • 2000–2001
    • National Institutes of Health
      • Laboratory of Molecular Biology
      Bethesda, MD, United States
  • 1996
    • Universität Bern
      Berna, Bern, Switzerland