Roberto Cabeza

Radboud University Nijmegen, Nymegen, Gelderland, Netherlands

Are you Roberto Cabeza?

Claim your profile

Publications (166)782.31 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that, because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented, panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a postscan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial-temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that, although there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems.
    Journal of Cognitive Neuroscience 04/2014; · 4.49 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The posterior midline region (PMR) –considered a core of the default mode network- is deactivated during successful performance in different cognitive tasks. The extent of PMR deactivations is correlated with task-demands and associated with successful performance in various cognitive domains. In the domain of episodic memory, functional MRI (fMRI) studies found that PMR-deactivations reliably predict learning (successful encoding). Yet, it is unclear what explains this relation. One intriguing possibility is that PMR-deactivations are partially-mediated by respiratory artifacts. There is evidence that the fMRI signal in PMR is particularly prone to respiratory artifacts, because of its large surrounding blood vessels. Since respiratory fluctuations has been shown to track changes in attention, it is critical for the general interpretation of fMRI results to clarify the relation between respiratory fluctuations, cognitive performance, and fMRI signal. Here, we investigated this issue by measuring respiration during word encoding, together with a breath-holding condition during fMRI-scanning. Stimulus-locked respiratory analyses showed that respiratory fluctuations predicted successful encoding via a respiratory phase-locking mechanism. At the same time, the fMRI analyses showed that PMR-deactivations associated with learning were reduced during breath-holding and correlated with individual differences in the respiratory phase-locking effect during normal breathing. A left frontal region –used as a control region– did not show these effects. These findings indicate that respiration is a critical factor in explaining the link between PMR-deactivation and successful cognitive performance. Further research is necessary to demonstrate whether our findings are restricted to episodic memory encoding, or also extend to other cognitive domains.
    Human Brain Mapping 01/2014; In Press. · 6.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.
    Cerebral Cortex 10/2013; · 6.83 Impact Factor
  • Source
    Peggy St. Jacques, Florin Dolcos, Roberto Cabeza
    10/2013;
  • Ilana T Z Dew, Roberto Cabeza
    [show abstract] [hide abstract]
    ABSTRACT: Although it is well established that the perirhinal cortex (PRC) makes an important contribution to recognition memory, the specific nature of this contribution remains uncertain. The finding that PRC activity is reduced for old compared with new items is typically attributed to the recovery of a long-term memory (LTM) signal. However, because old items are processed more easily or fluently than new items, reduced PRC activity could reflect increased fluency rather than LTM retrieval per se. We tested this hypothesis in humans using fMRI and a well-validated method to manipulate fluency: the masked priming paradigm. Some words during an old-new recognition test were preceded by conceptually related words (primes) that were subliminally presented (masked). The behavioral results replicated previous findings using this paradigm, whereby the fluency manipulation increased "oldness" responses to both old and new items. The fMRI analyses yielded two main sets of results. First, in the case of new items, which are independent from LTM retrieval, masked priming reduced PRC activity and predicted behavioral misattribution of fluency to oldness. Second, in the case of old items, the same PRC region showing fluency-related reductions for new items also contributed to "old" responding to old items. Individual differences in PRC attenuation also predicted oldness ratings to old items, and fluency modulated PRC connectivity with other brain regions associated with processing oldness signals, including visual cortex and right lateral prefrontal cortex. These results support a broader view in which the PRC serves a function more general than memory.
    Journal of Neuroscience 09/2013; 33(36):14466-74. · 6.91 Impact Factor
  • Roberto Cabeza
    Neuropsychologia 08/2013; · 3.48 Impact Factor
  • Erik A Wing, Elizabeth J Marsh, Roberto Cabeza
    [show abstract] [hide abstract]
    ABSTRACT: Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search).
    Neuropsychologia 04/2013; · 3.48 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories.
    Neurobiology of Learning and Memory 01/2013; · 3.33 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In functional neuroimaging studies, ventral parietal cortex (VPC) is recruited by very different cognitive tasks. Explaining the contributions of VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM) model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI) meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction-TPJ) and in the angular gyrus (AG), respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC) and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be explained by differences in the input and output to anterior and posterior VPC regions, without the need of postulating markedly different functions. These results are as consistent with integrative accounts of VPC function, such as the AtoM model, as they are with models that ascribe completely different functions to VPC regions.
    Frontiers in Human Neuroscience 01/2013; 7:38. · 2.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction.
    Frontiers in Psychology 01/2013; 4:293.
  • Source
    Roberto Cabeza, Morris Moscovitch
    [show abstract] [hide abstract]
    ABSTRACT: In the 1980s and 1990s, there was a major theoretical debate in the memory domain regarding the multiple memory systems and processing modes frameworks. The components of processing framework argued for a middle ground: Instead of neatly divided memory systems or processing modes, this framework proposed the existence of numerous processing components that are recruited in different combinations by memory tasks and yield complex patterns of associations and dissociations. Because behavioral evidence was not sufficient to decide among these three frameworks, the debate was largely abandoned. However, functional neuroimaging evidence accumulated during the last two decades resolves the stalemate, because this evidence is more consistent with the components framework than with the other two frameworks. For example, functional neuroimaging evidence shows that brain regions attributed to one memory system can contribute to tasks associated with other memory systems and that brain regions attributed to the same processing mode (perceptual or conceptual) can be dissociated from each other. Functional neuroimaging evidence suggests that memory processes are supported by transient interactions between a few regions called process-specific alliances. These conceptual developments are an example of how functional neuroimaging can contribute to theoretical debates in cognitive psychology.
    Perspectives on Psychological Science 01/2013; 8(1):49-55. · 4.89 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The posteromedial cortex (PMC) is strongly linked to episodic memory and age-related memory deficits. The PMC shows deactivations during a variety of demanding cognitive tasks as compared to passive baseline conditions and has been associated with the default-mode of the brain. Interestingly, the PMC exhibits opposite levels of functional MRI activity during encoding (learning) and retrieval (remembering), a pattern dubbed the encoding/retrieval flip (E/R-flip). Yet, the exact role of the PMC in memory function has remained unclear. This review discusses the possible neurofunctional and clinical significance of the E/R-flip pattern. Regarding neurofunctional relevance, we will review four hypotheses on PMC function: (1) the internal orienting account, (2) the self-referential processing account, (3) the reallocation account, and (4) the bottom-up attention account. None of these accounts seem to provide a complete explanation for the E/R-flip pattern in PMC. Regarding clinical relevance, we review work on aging and Alzheimer's disease, indicating that amyloid deposits within PMC, years before clinical memory deficits become apparent. High amyloid burden within PMC is associated with detrimental influences on memory encoding, in particular, the attenuation of beneficial PMC deactivations. Finally, we discuss functional subdivisions within PMC that help to provide a more precise picture of the variety of signals observed within PMC. Collective data from anatomical, task-related fMRI and resting-state studies all indicate that the PMC is composed of three main regions, the precuneus, retrosplenial, and posterior cingulate cortex, each with a distinct function. We will conclude with a summary of the findings and provide directions for future research.
    Neuropsychologia 09/2012; · 3.48 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A fundamental principle in memory research is that memory is a function of the similarity between encoding and retrieval operations. Consistent with this principle, many neurobiological models of declarative memory assume that memory traces are stored in cortical regions, and the hippocampus facilitates the reactivation of these traces during retrieval. The present investigation tested the novel prediction that encoding-retrieval similarity can be observed and related to memory at the level of individual items. Multivariate representational similarity analysis was applied to functional magnetic resonance imaging data collected during encoding and retrieval of emotional and neutral scenes. Memory success tracked fluctuations in encoding-retrieval similarity across frontal and posterior cortices. Importantly, memory effects in posterior regions reflected increased similarity between item-specific representations during successful recognition. Mediation analyses revealed that the hippocampus mediated the link between cortical similarity and memory success, providing crucial evidence for hippocampal-cortical interactions during retrieval. Finally, because emotional arousal is known to modulate both perceptual and memory processes, similarity effects were compared for emotional and neutral scenes. Emotional arousal was associated with enhanced similarity between encoding and retrieval patterns. These findings speak to the promise of pattern similarity measures for evaluating memory representations and hippocampal-cortical interactions.
    Cerebral Cortex 09/2012; · 6.83 Impact Factor
  • Trends in Cognitive Sciences 07/2012; 16(8):400-1. · 16.01 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although ventral parietal cortex (VPC) activations can be found in a variety of cognitive domains, these activations have been typically attributed to cognitive operations specific to each domain. In this article, we propose a hypothesis that can account for VPC activations across all the cognitive domains reviewed. We first review VPC activations in the domains of perceptual and motor reorienting, episodic memory retrieval, language and number processing, theory of mind, and episodic memory encoding. Then, we consider the localization of VPC activations across domains and conclude that they are largely overlapping with some differences around the edges. Finally, we assess how well four different hypotheses of VPC function can explain findings in various domains and conclude that a bottom-up attention hypothesis provides the most complete and parsimonious account.
    Trends in Cognitive Sciences 05/2012; 16(6):338-52. · 16.01 Impact Factor
  • Source
    Norman R. Brown, Lori Buchanan, Roberto Cabeza
    [show abstract] [hide abstract]
    ABSTRACT: Participants studied lists of multiply presented converging associates (e.g.,bed, dream, pillow, etc.) and were timed as they estimated how often they saw list items, related foils (e.g.,blanket), and non-presented critical items (SLEEP). Average number of repetitions (few [3] vs. many [6]) and repetition variability (fixed vs. variable) were manipulated between subjects. Participants responded more slowly to critical items (3.18 sec) than to list items (2.45 sec) or foils (2.22 sec). In addition, critical-item judgments of frequency (JOFs) were about as large as list-item JOFs, and false recognition (i.e., nonzero JOFs) of critical items was most likely in the few-fixed condition (96%) and least likely in the many-fixed condition (74%). These findings suggest that people can userecollection failure—the absence of an anticipated recollective experience, coupled with strong familiarity—to distinguish critical items from list items and that recollection failure is weighted most heavily when people expect familiar probes to access episodic information.
    Psychonomic Bulletin & Review 04/2012; 7(4):684-691. · 2.61 Impact Factor
  • Ilana T Z Dew, Roberto Cabeza
    [show abstract] [hide abstract]
    ABSTRACT: Abstract The article "More than a feeling: Pervasive influences of memory without awareness of retrieval" reviews evidence from ERP studies of recognition memory that the FN400 effect typically ascribed to familiarity may index implicit memory that occurs during recognition testing. We find their argument compelling, and contend that this potential "implicit contamination" is not unique to ERP studies. We suggest an analogous problem affecting fMRI studies, focusing particularly on the perirhinal cortex. Resolving this issue is critical for understanding the relationship between memory and the medial temporal lobes.
    Cognitive neuroscience 01/2012; 3(3-4):214-5. · 2.19 Impact Factor
  • Source
    Nancy A Dennis, Roberto Cabeza
    [show abstract] [hide abstract]
    ABSTRACT: Abundant research finds that in young adults explicit learning (EL) is more dependent on the medial temporal lobes (MTL) whereas implicit learning (IL) is more dependent on the striatum. Using fMRI, we investigated age differences in each task and whether this differentiation is preserved in older adults. Results indicated that, while young recruited the MTL for EL and striatum for IL, both activations were significantly reduced in older adults. Additionally, results indicated that older adults recruited the MTL for IL, and this activation was significantly greater in older compared with young adults. A significant Task × Age interaction was found in both regions-with young preferentially recruiting the MTL for EL and striatum for IL, and older adults showing no preferential recruit for either task. Finally, young adults demonstrated significant negative correlations between activity in the striatum and MTL during both the EL and IL tasks. These correlations were attenuated in older adults. Taken together results support dedifferentiation in aging across memory systems.
    Neurobiology of aging 12/2011; 32(12):2318.e17-30. · 5.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Studies of cognitive and neural aging have recently provided evidence of a shift from an early- to late-onset cognitive control strategy, linked with temporally extended activity in the prefrontal cortex (PFC). It has been uncertain, however, whether this age-related shift is unique to PFC and executive control tasks or whether the functional location might vary depending on the particular cognitive processes that are altered. The present study tested whether an early-to-late shift in aging (ELSA) might emerge in the medial temporal lobes (MTL) during a protracted context memory task comprising both anticipatory cue (retrieval preparation) and retrieval probe (retrieval completion) phases. First, we found reduced MTL activity in older adults during the early retrieval preparation phase coupled with increased MTL activity during the late retrieval completion phase. Second, we found that functional connectivity between MTL and PFC regions was higher during retrieval preparation in young adults but higher during retrieval completion in older adults, suggesting an important interactive relationship between the ELSA pattern in MTL and PFC. Taken together, these results critically suggest that aging results in temporally lagged activity even in regions not typically associated with cognitive control, such as the MTL.
    Cerebral Cortex 11/2011; 22(11):2542-53. · 6.83 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Episodic and autobiographical memory are clearly related, yet in both the adult and developmental literatures it is difficult to compare them because of differences in how the constructs are assessed, including differences in content, levels of control, and time since experience. To address these issues, we directly compared children's and adults' autobiographical and episodic memory using the same controlled paradigm. Participants engaged in a photo-taking activity in a museum (autobiographical encoding) and viewed others' photographs of the same museum exhibits (episodic encoding). At test, participants classified photos as ones they took, viewed, or novel. In the autobiographical condition older children and adults performed similarly; younger children's performance was lower than adults'. In contrast, in the episodic condition both groups of children performed more poorly than adults. The findings suggest the developmental primacy of autobiographical relative to episodic memory, and that traditional episodic tasks may underestimate older children's declarative memory abilities.
    Memory 09/2011; 19(8):825-35. · 2.09 Impact Factor

Publication Stats

12k Citations
2k Downloads
782.31 Total Impact Points

Institutions

  • 2013
    • Radboud University Nijmegen
      Nymegen, Gelderland, Netherlands
    • University of Illinois, Urbana-Champaign
      Urbana, Illinois, United States
  • 2002–2013
    • Duke University
      • Department of Psychology and Neuroscience
      Durham, NC, United States
  • 2001–2012
    • Duke University Medical Center
      • Center for Cognitive Neuroscience
      Durham, NC, United States
  • 1999–2012
    • University of Alberta
      • Department of Psychology
      Edmonton, Alberta, Canada
    • Otto-von-Guericke-Universität Magdeburg
      • Clinic for Neurology
      Magdeburg, Saxony-Anhalt, Germany
  • 2011
    • Boston University
      • Memory Disorders Research Center
      Boston, MA, United States
  • 2006–2011
    • University of Amsterdam
      • Faculty of Science
      Amsterdam, North Holland, Netherlands
  • 2010
    • Pennsylvania State University
      • Department of Psychology
      State College, PA, United States
  • 2007–2009
    • Daegu University
      • Department of Rehabilitation Psychology
      Taegu, Daegu, South Korea
  • 1998–2007
    • Umeå University
      • Department of Psychology
      Umeå, Vaesterbotten, Sweden
  • 2000
    • Baycrest
      Toronto, Ontario, Canada
  • 1996–2000
    • University of Toronto
      • Rotman Research Institute
      Toronto, Ontario, Canada
  • 1994
    • University of Tsukuba
      Tsukuba, Ibaraki, Japan