Maria Luisa Torre

University of Pavia, Ticinum, Lombardy, Italy

Are you Maria Luisa Torre?

Claim your profile

Publications (45)125.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal Stromal Cells (MSC), as advanced therapy products, must satisfy all the requirements for human use of medicinal products, aiming to maintain the quality and safety of the cells. The MSC manufacturing process for clinical use should comply with the principles of Good Manufacturing Practice (GMP). This ensures that cell preparations are produced and controlled, from the collection and manipulation of raw materials, through the processing of intermediate products, to the quality controls, storage, labelling and packaging, and release. The objective of this document is to provide the minimal quality requirements for the MSC production and its delivery for clinical use, so the safety of the final cell therapy product will not be compromised. For this purpose, the document evaluates the most important steps of GMP-compliant MSC production: the isolation and expansion process; the validation phase of the process, including all quality controls for the characterization, functionality, potency and safety of MSCs; the quality control at the batch release to guarantee the safety of patient infusion. This opinion paper reflects the consensus viewpoint of the authors and scientists participating the GISM Working Group*. * GISM Working Group includes the following individual investigators: Biagi E, Del Bue M, Frigerio S, Lisini D, Marazzi M, Mareschi K, Nava S, Parolini O, Riccobon A, Romagnoli L, Viganò M.
    Stem cells and development. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work reports on the formation of a carrier-in-carrier device for the systemic delivery and targeting of hydrophobic drugs mediated by micelle-loaded mesenchymal stromal cells (MSCs) (carrier-in-carrier) to be administered by intravenous injection. The innate ability of MSCs to reach injured tissues such as the central nervous system or other damaged tissues, is the key for the second order delivery and first order targeting. Inulin-d-alfa-tocopherol succinate micelles (INVITE M) are able to incorporate highly hydrophobic drugs and, due to their dimensions (≈7nm diameter), to penetrate the cell membrane easily and quickly. This study demonstrates that the curcumin loaded micelles (INVITE MC), sterilized by filtration, reached the maximum loading in MSCs in few minutes and that the loading was concentration-dependent. When "naked" curcumin was used, an evident cytotoxicity on MSCs was detected, while INVITE micelles protected them from this effect. Moreover, MSCs loaded with INVITE MC are able to release the entrapped drug. This study strongly supports the feasibility of the carrier-in-carrier approach for the therapy of selected diseases, i.e., this innovative drug delivery system will be proposed for the treatment of the amyotrophic lateral sclerosis (ALS). Copyright © 2014 Elsevier B.V. All rights reserved.
    Colloids and surfaces B: Biointerfaces 12/2014; · 4.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic wounds are an expression of underlying complex pathologies and have a high incidence. Skin substitutes may represent an alternative approach to treat chronic ulcers. The aim of this retrospective observational study was to evaluate the wound reduction using skin substitutes based on allogenic fibroblasts or keratinocytes in 30 patients not responding to conventional therapy. Wound bed was prepared, then keratinocytes on Laserskin(®) to treat superficial wounds or fibroblasts on Hyalograft 3D(R) to treat deep leg ulcers were applied, and finally wounds were treated with a secondary dressing composed of nanocrystalline silver. Once a week constructs were removed and new bioengineered products were applied, as well as nanocrystalline silver medication. In none of the cases under examination did any complications arise relating to the treatment. We also achieved a reduction in wound dimension and exudates, and an increase in wound bed score. Postoperative assessment shows a degree of healing that is statistically higher in the group treated with keratinocytes as compared with the fibroblast group. This retrospective study improves our understanding and defines the clinical indications for the various uses of the two types of skin substitutes.
    International Wound Journal 02/2014; · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A routine use of boar-sexed semen is limited by the long sorting time necessary to obtain an adequate number of sexed spermatozoa for artificial insemination and by the high susceptibility of spermatozoa of this species to damages induced by sorting procedure and subsequent cryopreservation. The aim of this work was to study the impact of encapsulation in barium alginate membrane on sorted boar spermatozoa by evaluating membrane integrity, chlortetracycline staining patterns, protein tyrosine phosphorylation, and Hsp70 immunolocalization during storage over 72 hours in liquid or encapsulated form. The encapsulation procedure significantly (P < 0.05) decreased the overall membrane integrity of control unsorted semen (81.8 vs. 57.4, CTR vs. CPS), but did not negatively affect the overall viability and the chlortetracycline staining patterns of sorted encapsulated cells. Moreover, encapsulation significantly decreased (P < 0.05) the overall phosphotyrosin A pattern cell percentage in unsorted (98.4 vs. 92.6, CTR vs. CPS) but not in sorted semen (64.0 vs. 74.2; SORT CTR vs. SORT CPS). As for Hsp70, the overall percentage of cells displaying the different patterns was significantly influenced (P < 0.05) by treatment but not by storage time. The sorting procedure seems to induce the major changes, whereas encapsulation tends to exert a protective effect on sorted semen by increasing the percentage of spermatozoa displaying the T pattern (2.8 vs. 24.3; SORT CTR vs. SORT CPS). In conclusion, our data confirm that the damaging impact of the encapsulation in barium alginate capsules seems to be limited when compared with that of the sorting procedure and, moreover, the association of the two procedures does not result in an algebraic sum of the negative effects. These results suggest the possibility of a future utilization of the encapsulation technology in order to store sorted spermatozoa and permit their controlled release in the female genital tract.
    Theriogenology 06/2013; · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influencedthese properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use.
    International journal of biological macromolecules 03/2013; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Extracts of Crataegus monogyna Jacq. (hawthorn) show an interesting free radical scavenging (FRS) effect, related to their flavonoids content. Unfortunately, their oral administration is affected by their low bioavailability. The aim of this work is to obtain a multiparticulate drug delivery system for hawthorn extracts for oral administration. The extracts from flowering tops (FL) or fruits (FR) of hawthorn were obtained with maceration, using ethanol as an extraction solvent, and their antioxidant activity was evaluated. FL extract showed the highest FRS activity (EC(50) 3.72 ± 1.21 µg/ml), so it was selected to prepare microparticulate systems by a spray-drying technique, which were characterized by granulometric analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy, confocal fluorescence microscopy and hyperoside content. Antioxidant activity was evaluated before and after gastrointestinal transit in vitro simulation. Results indicate that the microparticulate systems maintained the antioxidant activity of hawthorn also after gastrointestinal transit in vitro simulation, exhibiting properties suitable for oral administration.
    Pharmaceutical Development and Technology 01/2013; · 1.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.
    Current pharmaceutical design 12/2012; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo.
    Theriogenology 12/2012; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Encapsulation of boar semen is a novel technique that allows insemination to be performed as a single intervention without the need to dilute the semen. The research reviewed in this paper shows that spermatozoa encapsulated in alginate are able to achieve the same fertility as two or three inseminations per oestrus using standard techniques and unencapsulated cells. The use of encapsulated spermatozoa is currently limited by the need for longer semen processing time and wastage of disposable material (catheters, plastic bottles, etc.). In this review, the advantages, the drawbacks and the future possibilities for artificial insemination with encapsulated spermatozoa in the sow are discussed, with the aim of applying this promising new methodology for the optimization of sow reproductive performance.
    Reproduction in Domestic Animals 08/2012; 47 Suppl 4:353-8. · 1.18 Impact Factor
  • Source
    Food Production - Approaches, Challenges and Tasks, 01/2012; , ISBN: 978-953-307-887-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human hair follicle cells, both bulge and dermal papilla cells, were isolated and cultured in a GMP cell factory, in order to obtain an in vitro hair follicle source for encapsulation end transplantation in alopecia regenerative cell therapy. An in vitro model, constituted by organotypic cultures of human skin sample, was set up to simulate the dermal-epidermal interaction between bulge cells and dermal papilla cells, evaluating the possible new follicles formation and the regenerative potentiality of these hair follicle cells. Both the bulge and dermal papilla cells show an excellent cellular proliferation as well as an abundant extracellular matrix production. The immunofluorescence investigation revealed the positivity of both cell lines to CK15 and CD200, whereas both cell lines were negative to CD71 and Oct-4. The pool of cultured bulge and dermal papilla cells was injected into the deep dermis; at day 28 of culture, some organized areas with a higher cell density can be observed: the cells self-organize into papilla-like lengthened aggregates. In samples in which the follicular cells have been seeded on the dermis surface, an epidermis-like homogeneous monolayer on the dermis surface can be seen, therefore showing a potentiality of these cells for epidermis regeneration. These data show the efficacy of a cellular isolation and amplification approach to obtain an in vitro human hair follicle regenerative source on industrial scale in a GMP cell factory. The results also proved an intrinsic potentiality of follicular cells to in vitro recreate the epidermis for tissue engineering purposes. Thus, it is feasible to produce bioengineered hair follicles in a GMP cell factory, for encapsulation and transplantation in alopecic patients.
    Cell Transplantation 03/2011; 21(1):373-8. · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Articular cartilage has limited repair and regeneration potential, and the scarcity of treatment modalities has motivated attempts to engineer cartilage tissue constructs. The use of chondrocytes in cartilage tissue engineering has been restricted by the limited availability of these cells, their intrinsic tendency to lose their phenotype during the expansion, as well as the difficulties during the first cell adhesion to the scaffold. Aim of this work was to evaluate the intra-articular adipose stromal vascular fraction attachment on silk fibroin scaffold to promote chondrocytes adhesion and proliferation. Physicochemical characterization has demonstrated that three-dimensionally organized silk fibroin scaffold is an ideal biopolymer for cartilage tissue engineering; it allows cell attachment, scaffold colonization, and physically cell holding in the area that must be repaired; the use of adipose-derived stem cells is a promising strategy to promote adhesion and proliferation of chondrocytes to the scaffold as an autologous human feeder layer.
    Tissue Engineering Part A 02/2011; 17(13-14):1725-33. · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adipose-derived stromal vascular fraction (SVF) represents a rich source of mesenchymal cells, potentially able to differentiate into adipocytes, chondrocytes, osteoblasts, myocytes, cardiomyocytes, hepatocytes, and neuronal, epithelial, and endothelial cells. These cells are ideal candidates for use in regenerative medicine, tissue engineering, including gene therapy, and cell replacement cancer therapies. In this work, we aimed to the optimization of the adipose SVF-based therapy, and the effect of the collection site, surgical procedure, and tissue processing techniques on SVF yield was evaluated in terms of cell recovery and live cells, taking into account the effect of gender, age, and body mass index. Adipose tissue samples were recovered from 125 informed subjects (37 males and 88 females; mean age: 51.31 years; range: 15-87 years), and digested in different condition with collagenase. A multivariate linear model put in evidence that in males the best collection site in terms of yield is located in the abdomen, whereas in females the biopsy region do not influence cell recovery; the collection technique, the age, and the body mass index of donor seem not to influence the cell yield. The tissue-processing procedures strongly modify the yield and the vitality of cells: a collagenase concentration of 0.2% and a digestion time of 1 h could be chosen as the best operating conditions.
    Tissue Engineering Part C Methods 12/2010; 16(6):1515-21. · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Techniques for medical tissue regeneration require an abundant source of human adult stem cells. There is increasing evidence that adipose stem cells contribute to restoration of tissue vascularization and organ function. The object of our study was to isolate and characterize adult adipose-derived stem cells from patients undergoing on lipoaspirate transplant with the aim to improve tissue regeneration. Adipose-derived stem cells were isolated and purified from the lipoaspirate of 15 patients and characterized for CD markers and the ability to differentiate toward the adipogenic lineage. We found that purified adipose stem cells express high level of CD49d, CD44, CD90, CD105, CD13, and CD71 and these markers of staminality were maintained at high level for at least 3 months and seven passages of in vitro culture. As expected, these cells resulted negative for the endothelial and hematopoietic-specific markers CD31, CD106, CD34, and CD45. Differentiation towards adipogenic lineage demonstrated that purified adipose-derived stem cells are still able to become adipocytes at least 3 months after in vitro culture. The analysis of Akt and MAPK phosphorylation confirmed a modulation of their activity during differentiation. Interestingly, we established for the first time that, among the p53 family members, a strong upregulation of p63 expression occurs in adipocytic differentiation, indicating a role for this transcription factor in adipocytic differentiation. Taken together, these data indicate that purified lipoaspirate-derived stem cells maintain their characteristic of staminality for a long period of in vitro culture, suggesting that they could be applied for cell-based therapy to improve autologous lipoaspirate transplant.
    Cell Transplantation 10/2010; 19(10):1225-35. · 3.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the differences in the granulometry of milk fat globules between swine and bovine species, milk samples from 30 lactating sows were analyzed for fat globule dimensions and compared with cow milk samples. Results showed differences between the fat globules: sow milk presents reduced globule diameters compared with cow milk (volume-weighted diameter 2.62 vs. 3.27 microm, p < 0.001) and reduced interglobular distance. A positive relationship was observed between milk fat content and globule diameter, while a slight, insignificant inverse trend was detected between the day of lactation and fat globule diameter. These complex interactions between milk lipids, globule membrane proteins, and globule dimensions provide a better understanding of digestion/absorption phenomena in the design of milk replacers.
    Veterinary Research Communications 06/2010; 34 Suppl 1:S29-32. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Controlled-release capsules containing boar spermatozoa were developed to extend the preservation time of spermatozoa and maximize the efficiency of a single artificial insemination. A large trial (4245 sows) was performed with these capsules using double/triple conventional artificial insemination as a control. The effect of treatment on pregnancy diagnosis, delivery, and born piglets was investigated, with allowance being made for considering season, spermatozoa amount, and the weaning-to-estrus interval as confounding variables. The same pregnancy rate and prolificacy were obtained by two insemination techniques, and a higher parturition frequency was reached with capsules. The reproductive performance in pigs has therefore been optimized by a single instrumental insemination with controlled-release capsules.
    Theriogenology 07/2009; 72(4):439-44. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A boar sperm encapsulation technology in barium alginate has been developed to enhance reproductive performances and spermatozoa preservation time; aim of this work was to evaluate the effect of in vitro sperm encapsulation on polyspermy as a function of storage time at 18 degrees C. A total number of 40 in vitro fertilization (IVF) tests were performed using encapsulated or diluted spermatozoa (20 IVF each treatment). Overall, 1288 in vitro matured oocytes were fertilized with spermatozoa stored at 24, 48 or 72 h at 18 degrees C for both treatments polyspermy and normospermy, and the non-penetration rates were assessed by optical microscopy. Results indicate a significant reduction in risk of polyspermic oocytes when spermatozoa are preserved in barium alginate membranes (incidence risk ratio: 0.766 with respect to diluted); such enhancement could be explained by lesser damage of sperm membranes achieved by encapsulation technology.
    Reproduction in Domestic Animals 01/2009; 45(2):359-62. · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell encapsulation, a strategy whereby a pool of live cells is entrapped within a semipermeable membrane, represents an evolving branch of biotechnology and regenerative medicine. For example, over the last 20 years, male and female gametes and embryos have been encapsulated with or without somatic cells for different purposes, such as in vitro gametogenesis, embryo culture, cell preservation and semen controlled release. Beside that, cell encapsulation technology in alginate, which is a natural biodegradable polymer that mimics the extracellular matrix and supports both cell functions and metabolism, has been developed with the aim of obtaining three-dimensional (3D) cultures. In this context, adipose-derived stromal vascular fraction (SVF) has attracted more and more attention because of its enormous potential in tissue regeneration. In fact, the SVF represents a rich source of mesenchymal cells (ADSCs), potentially able to differentiate into adipocytes, chondrocytes, osteoblasts, myocytes, cardiomyocytes, hepatocytes, and neuronal, epithelial and endothelial cells. These cells are ideal candidates for use in regenerative medicine, tissue engineering, including gene therapy and cell replacement cancer therapies. As long as technological resources are available for large-scale cell encapsulation intended for advanced therapies (gene therapy, somatic cell therapy and tissue engineering), the state-of-the-art in this field is reviewed in terms of scientific literature.
    Cytotechnology 11/2008; 58(1):49-56. · 1.45 Impact Factor
  • Veterinary Research Communications 09/2008; 32 Suppl 1:S147-9. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cell encapsulation technology in alginate has been developed with the aim of obtaining cell controlled release or three-dimensional cultures. The aim of this work is to verify the predictability of alginate capsules for large-scale production by Good Manufacturing Practice (GMP) standardized procedures in a cell factory. A cell-free capsule model was performed following the GMP guidelines: an opaque agent suspension in a bivalent cation solution (Ca(2+), Ba(2+), Sr(2+)) was dropped in a sodium alginate solution, obtaining capsules presenting a liquid core surrounded by a gel alginate membrane. The concentration of the ion, and the treatment with protamine, can considerably vary the characteristics of the capsules (weight, whole diameter, core diameter, gel capsule thickness, capsule strength). It is therefore possible to optimize the performance of the capsules, relating the molecular structure and size of the polymeric membrane to the desired functional properties. Technological resources are available for large-scale cell encapsulation intended for advanced therapies (gene therapy, somatic cell therapy and tissue engineering) in a cell factory, following GMP guidelines.
    Acta Biomaterialia 08/2008; 4(4):943-9. · 5.68 Impact Factor

Publication Stats

487 Citations
125.17 Total Impact Points


  • 1996–2014
    • University of Pavia
      • • Department of Drugs Sciences
      • • Department of Public Health, Neuroscience, Experimental and Forensic Medicine
      • • Department of Chemistry
      Ticinum, Lombardy, Italy
  • 2012–2013
    • University of Bologna
      • Department of Veterinary Medical Sciences DIMEVET
      Bolonia, Emilia-Romagna, Italy
  • 2004–2012
    • University of Milan
      • • Department of Veterinary Science and Public Health (DIVET)
      • • Department of Biomedical Science
      • • Department of Veterinary Sciences and Technologies for Food Safety VSA
      Milano, Lombardy, Italy
  • 2011
    • Azienda Ospedaliera Niguarda Ca' Granda
      Milano, Lombardy, Italy