Takashi Nishimura

Hokkaido University, Sapporo, Hokkaidō, Japan

Are you Takashi Nishimura?

Claim your profile

Publications (146)475.34 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine. Copyright © 2014. Published by Elsevier B.V.
    Immunology Letters 12/2014; 163(1). DOI:10.1016/j.imlet.2014.11.016 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified novel helper epitope peptides of Survivin cancer antigen, which are presented to both HLA-DRB1*01:01 and DQB1*06:01. The helper epitope also contained three distinct Survivin-killer epitopes presented to HLA-A*02:01 and A*24:02. This 19 amino-acids epitope peptide (SU18) induced weak responses of Survivin-specific CD4(+) and CD8(+) T cells though it contained both helper and killer epitopes. To enhance the vaccine efficacy, we synthesized a long peptide by conjugating SU18 peptide and another DR53-restricted helper epitope peptide (SU22; 12 amino-acids) using glycine-linker. We designated this artificial 40 amino-acids long peptide containing two helper and three killer epitopes as Survivin-helper/killer-hybrid epitope long peptide (Survivin-H/K-HELP). Survivin-H/K-HELP allowed superior activation of IFN-γ-producing CD4(+) Th1 cells and CD8(+) Tc1 cells compared with the mixture of its component peptides (SU18 and SU22) in the presence of OK-432-treated monocyte-derived DC (Mo-DC). Survivin-H/K-HELP-pulsed Mo-DC pretreated with OK-432 also exhibited sustained antigen-presentation capability of stimulating Survivin-specific Th1 cells compared with Mo-DC pulsed with a mixture of SU18 and SU22 short peptides. Moreover, we demonstrated that Survivin-H/K-HELP induced a complete response in a breast cancer patient with the induction of cellular and humoral immune responses. Thus, we believe that an artificially synthesized Survivin-H/K-HELP will become an innovative cancer vaccine.
    Immunology letters 04/2014; 161(1). DOI:10.1016/j.imlet.2014.04.010 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer/testis (CT) antigens, which are expressed in various cancer cells but not in normal cells except germline cells of the testis, have been used as targets for cancer vaccine therapy. 5-Aza-2'-deoxycytidine (DAC), a potent inhibitor of genomic and promoter-specific DNA methylation, inhibits DNA methyltransferase activity and is reported to induce the expression of certain CT antigens by the demethylation of promoter CpG islands of the treated cells. Here, using DAC-treated cancer cells, we searched for novel attractive target molecules that would be useful for cancer immunotherapy and found a meiosis-specific protein, meiosis specific with OB domains (MEIOB), to be a novel CT antigen. Indeed, the MEIOB gene is expressed only in the testis and not in other normal tissues. The mRNA expression of MEIOB was greatly enhanced in several lung cancer cell lines after the treatment with DAC. Furthermore, we identified a variety of helper epitopes of the MEIOB antigen, which were recognized by MEIOB antigen-specific T cells in a HLA-restriction manner. Finally, we demonstrated that IFN-γ production of MEIOB peptide-specific helper T cells in response to HLA-matched cancer cells was greatly augmented by treatment with DAC and IFN-γ. Taken together, these findings show DAC to be a promising tool for finding novel CT antigens and for developing a future novel combination cancer vaccine chemotherapy.
    Immunology letters 01/2014; 158(1-2). DOI:10.1016/j.imlet.2014.01.004 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wilms' tumor gene 1 (WT1) has been proposed as an attractive target for cancer immunotherapy. A natural 9-mer peptide (CYTWNQMNL), which bound to human leukocyte antigen (HLA)-A∗24:02, was identified from among WT1-specific cytotoxic T lymphocyte (CTL) epitopes. This natural WT1 CTL epitope peptide was further modified (CMTWNQMNL) to enhance its binding affinity to HLA-A∗24:02. This modified WT1 CTL epitope peptide was superior to the natural peptide for inducing HLA-A∗24:02-restricted WT1-specific CTLs. Here we induced several WT1 CTLs that reacted with both modified and natural WT1 tetramers from peripheral blood mononuclear cells. Then, T-cell receptor (TCR) genes were isolated from these WT1 CTLs to determine their Vα and Vβ usage. These TCR genes were transduced into human T lymphoma cells to establish a stable cell line, SK37, which expressed a WT1-specific TCR. We confirmed that SK37 cells reacted with both modified and natural WT1 tetramers, which indicated that SK37 cells could be a useful tool for WT1 tetramer reagent quality assurance. One the basis of these findings, we propose that this WT1 tetramer, which was quality-assured using established SK37 cells, will contribute to reliable immunomonitoring of tumor-specific CTL responses of cancer patients who receive WT1-targeted cancer vaccine therapy or TCR-gene therapy.
    Biomedical Research 02/2013; 34(1):41-50. DOI:10.2220/biomedres.34.41 · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of immune dysfunction during the tumor-bearing state is a critical issue in combating cancer. In this study, we initially found that IL-6, one of the cachectic factors, suppressed CD4(+) T cell-mediated immunity through downregulation of MHC class II by enhanced arginase activity of dendritic cells (DC) in tumor-bearing mice. We demonstrated that administration of Ab against IL-6R (anti-IL-6R mAb) greatly enhanced T cell responses and inhibited the growth of tumor in vivo. We also found that IL-6 upregulated the expression of arginase-1 and arginase activity of DC in vitro. Tumor-infiltrating CD11c(+) DC exhibited upregulated mRNA expression of arginase-1 but reduced expression of MHC class II in parallel with the increase in serum IL-6 levels at the late stage in tumor-bearing hosts. However, the administration of anti-IL-6R mAb into tumor-bearing mice inhibited both the downmodulation of MHC class II and the upregulation of arginase-1 mRNA levels in DC. Furthermore, we noted that N(ω)-hydroxy-l-arginine or l-arginine, an arginase-1 inhibitor, blocked the reduction in MHC class II levels on CD11c(+) DC during the tumor-bearing state. Finally, we demonstrated that the administration of N(ω)-hydroxy-l-arginine at the peritumor site significantly enhanced CD4(+) T cell responses and inhibited tumor growth. Thus, IL-6-mediated arginase activation and the subsequent reduction in MHC class II expression on DC appeared to be critical mechanisms for inducing dysfunction of the immune system in the tumor-bearing state. Blockade of the IL-6-arginase cascade is a promising tool to overcome the dysfunction of antitumor immunity in tumor-bearing hosts.
    The Journal of Immunology 12/2012; 190(2). DOI:10.4049/jimmunol.1103797 · 4.92 Impact Factor
  • Source
    Takayuki Satoh · Masaki Tajima · Daiko Wakita · Hidemitsu Kitamura · Takashi Nishimura ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The plasticity of T lymphocytes induced by epigenetic modifications of gene promoters may play a pivotal role in controlling their effector functions, which are sometimes causally associated with immune disorders. IL -17-producing T cells, which induce type 17 immune responses, are newly identified pathogenic effector cells. The type 1 signature cytokine IFN-γ strongly inhibits their differentiation, indicating a mutually exclusive relationship between type 17- and type 1-immune responses. However, many reports indicate the presence of a unique IL-17/IFN-γ-double producing T-cell subset in various inflammatory settings, although the mechanisms responsible for their development and their precise functions remain unclear. Here, we demonstrate that IL-12 permits the conversion of mouse IL-17-producing CD8(+) T (Tc17) cells to IL-17/IFN-γ-double producing CD8(+) T (Tc17/IFN-γ) cells, and that this conversion is due to repressive epigenetic modifications of Socs3 gene promoters. Moreover, we show that SOCS3 strongly regulates the capability of Tc17 cells to produce IL-17, in addition to regulating the expression of the type 17-master regulator RORγt. These findings elucidate the mechanisms underlying the conversion of Tc17 cells into Tc17/IFN-γ cells. As these cells are known to have potent antitumor activities, manipulation of these conversion mechanisms for therapeutic tumor immunity may be possible.
    European Journal of Immunology 09/2012; 42(9):2329-42. DOI:10.1002/eji.201142240 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD11b(+) Gr-1(+) immature myeloid cells (ImCs), which are abnormally increased in tumor-bearing mice, were classified into three different subsets according to their phenotypic and morphological characteristics: Gr-1(low) F4/80(+) macrophages (MΦ-ImCs), Gr-1(mid) stab neutrophils (Neut(stab)-ImCs), and Gr-1(high) segmented neutrophils (Neut(seg)-ImCs). In the spleen, only MΦ-ImCs but not Neut(stab)-ImCs and Neut(seg)-ImCs exhibited a significant immunosuppressive activity in MLR. In contrast, tumor-infiltrating leukocytes (TILs) contained only two ImC subsets, MΦ-ImCs and Neut(seg)-ImC, both of which exhibited stronger inhibitory activity against T cells compared with spleen-MΦ-ImCs. Thus, we concluded that tumor-infiltrating MΦ-ImCs and Neut(seg)-ImCs were fully differentiated myeloid-derived suppressor cells (MDSCs) with stronger T-cell inhibitory activity. Indeed, spleen MΦ-ImCs were converted into stronger MΦ-MDSCs by tumor-derived factor (TDF). Moreover, both spleen Neut(stab)-ImCs and Neut(seg)-ImCs differentiated into Neut(seg)-MDSCs with suppressive activity after culture with TDF. We first demonstrated that administration of anti-IL-6R mAb could downregulate the accumulation of MΦ-MDSCs and Neut(seg)-MDSCs in tumor-bearing mice. The elimination of those MDSCs caused subsequent enhancement of antitumor T-cell responses, including IFN-γ-production. The therapeutic effect of anti-IL-6R mAb was further enhanced by combination with gemcitabine (GEM). Thus, we propose that anti-IL-6R mAb could become a novel tool for the downmodulation of MDSCs to enhance antitumor T-cell responses in tumor-bearing hosts.
    European Journal of Immunology 08/2012; 42(8):2060-72. DOI:10.1002/eji.201142335 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type-1 immunity plays a crucial role in host defense against various tumors and infectious diseases. Here, we first demonstrated that extract of Larix Leptolepis (ELL), one of the most popular timbers at Hokkaido area in Japan, strongly activated Type-1 immunity. ELL induced production of Type-1 cytokines such as IL-12 and TNF-α from bone marrow-derived dendritic cells (BMDCs) in TLR2- and TLR4-dependent manner and remarkably up-regulated the expression of MHC and co-stimulatory molecules. In addition, antigen-specific CTLs were significantly augmented by the combined administration of ELL, antigen and BMDCs. Finally, we revealed that combination therapy using ELL, antigen and BMDCs significantly inhibited the growth of established tumor in mouse model. Thus, these findings suggested that ELL would be a novel adjuvant for inducing an activation of Type-1-dependent immunity including activation of BMDCs and induction of tumor-specific CTLs, which is applicable to the therapy of cancer and infectious diseases.
    Cellular Immunology 05/2012; 276(1-2):153-61. DOI:10.1016/j.cellimm.2012.05.002 · 1.92 Impact Factor
  • Source
    Hidemitsu Kitamura · Minoru Kobayashi · Daiko Wakita · Takashi Nishimura ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.
    The Journal of Immunology 04/2012; 188(9):4200-8. DOI:10.4049/jimmunol.1102521 · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aryl hydrocarbon receptor (AhR) has been shown to play important roles in the immune system, and contributions of AhR ligands to the differentiation and functions of Th17/Treg cells have recently been established. However, it has not been fully clarified whether AhR plays roles in B cell differentiation and functions. The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly potent AhR agonist, was reported to suppress the production of immunoglobulin M (IgM) in a transformed mouse B cell line. However, TCDD exhibits high toxicity toward cells and has unknown activities except for its action as an AhR agonist. In the present study, we tried to clarify how an endogenously generated AhR agonist affects mouse B cell differentiation and functions in terms of the direct effects on the expression of Ig subclasses in purified mouse B cells stimulated with an anti-CD40 antibody and interleukin-4. The AhR agonist 2-(1'H-indole-3'- carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), which is derived via tryptophan metabolism, suppressed the expression of not only IgM, but also IgG1 and IgE. ITE was also found to suppress the expression of secreted-type Ig mRNAs and plasma cell-specific genes. These findings indicate that the endogenous AhR agonist suppresses B cell differentiation into Ig-secreting plasma cells.
    Biomedical Research 04/2012; 33(2):67-74. DOI:10.2220/biomedres.33.67 · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma.
    European Journal of Immunology 02/2012; 42(2):393-402. DOI:10.1002/eji.201141845 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A patient with pulmonary metastasis of colon cancer was treated with artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP) of MAGE-A4 cancer antigen. The patient was vaccinated with MAGE-A4-H/K-HELP combined with OK432 and Montanide ISA-51. There were no severe side-effects except for a skin reaction at the injection site. MAGE-A4-H/K-HELP induced MAGE-A4-specific Th1 and Tc1 immune responses and the production of MAGE-A4-specific complement-fixing IgG antibodies. Tumor growth and carcinoembryonic antigen tumor marker were significantly decreased in the final diagnosis. This is the first report that artificially synthesized MAGE-A4-H/K-HELP induces Th1-dependent cellular and humoral immune responses in a human cancer patient.
    Cancer Science 01/2012; 103(1):150-3. DOI:10.1111/j.1349-7006.2011.02106.x · 3.52 Impact Factor
  • Masaki Tajima · Daiko Wakita · Takayuki Satoh · Hidemitsu Kitamura · Takashi Nishimura ·
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been reported that IFN-γ-producing CD8(+) T (Tc1) cells express cytotoxic molecules such as perforin and granzyme B to exhibit higher cytotoxicity against tumor cells compared with Tc2 cells. However, the critical role of IL-17-producing CD8(+) T (Tc17)-cell subsets in tumor immunity remains unclear. Tc17 cells differentiated from naive CD8(+) T cells did not possess cytotoxic molecules and exhibited no strong cytotoxicity. However, when Tc17 effector cells were further cultured with IL-12, they converted into IFN-γ-producing Tc17 cells, which mainly consisted of IL-17/IFN-γ double-producing cells (Tc17/IFN-γ). IL-12-converted Tc17 cells also acquired cytotoxic function in addition to IFN-γ producibility. Moreover, they showed strong anti-tumor activity both in vitro and in vivo as well as Tc1 cells. Among four distinct subsets in IL-12-converted Tc17 cell populations, the isolated Tc17/IFN-γ cells exhibited cytotoxicity as well as IFN-γ-producing Tc1-like cells. Thus, we first indicate direct evidence that Tc17/IFN-γ cells, which were plastically converted from non-cytotoxic Tc17 cells by IL-12, exhibited strong anti-tumor activity as well as Tc17 cell-derived Tc1-like cells.
    International Immunology 12/2011; 23(12):751-9. DOI:10.1093/intimm/dxr086 · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graft-versus-host reaction (GVHR) is considered as a problem in hematopoietic cell transplantation. We found that CD45RB(high) CD62L(+) naïve CD4(+) T cells from wild-type B10D2 (H-2d MMTV6(-)) mice immediately differentiated into effector T cells producing high-levels of various cytokines after the transfer into BALB/c RAG2(-/-) (H-2d MMTV6(+)) mice. The expanded CD4(+) T cells, which have almost TCR Vβ3 chain, recognized the minor antigen of recipient mice and brought typical severe GVHR symptoms such as eyelid irritation, diarrhea, and liver failure. Eventually, all of the recipient mice transferred CD4(+) T cells was dead within 10 days. We demonstrated here that blockade of IL-6 signaling by administration of anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) remarkably inhibited the CD4(+) T cell-mediated lethal GVHR. In addition, we confirmed that the in vivo injection of anti-IL-6R mAb prevented the generation of effector CD4(+) T cells which produce the inflammatory cytokines such as IFN-γ, TNF-α, and IL-17. These findings indicated that IL-6 was a critical factor in the CD4(+) T cell-dependent acute GVHR induced by a minor-antigen, suggesting that IL-6-mediated signaling pathway would be a strong therapeutic target in T cell-mediated GVHR as well as other diseases including autoimmune and inflammation.
    Immunology letters 05/2011; 136(2):146-55. DOI:10.1016/j.imlet.2011.01.004 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathological influences of inflammation on left ventricular hypertrophy (LVH) were studied in subtotal nephrectomized (SNx) rats after 0.3% NaCl loading for 5 weeks. We found that mild hypertension, increased plasma levels of creatinine, inorganic phosphate, asymmetric dimethylarginine (ADMA), and parathyroid hormone (PTH) were observed in the present SNx rats without LVH. In the present study, the NaCl-loaded SNx (SNx + NaCl) rats were characterized by significant LVH and hypertension with aggravated values of all the parameters. We further confirmed that glomerular sclerosis, tubulointerstitial fibrosis, and inflammatory cell infiltration into the tubulointerstitial area, observed in the SNx rats, were more severely caused in the SNx + NaCl rats. In addition, plasma interleukin-6 (IL-6) levels in the SNx + NaCl rats were significantly increased compared to those in the SNx rats. These findings indicated that NaCl-loaded SNx rats developed LVH and hypertension, which were accompanied with increased plasma levels of PTH, creatinine, inorganic phosphorus, ADMA, and IL-6. Thus, these results suggest that inflammation as well as endothelial dysfunction would be correlated with LVH as non-traditional risk factors at the early stage in the present renal failure model.
    Biomedical Research 04/2011; 32(2):83-90. DOI:10.2220/biomedres.32.83 · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liposomes reportedly accumulate in monophagocytic systems (MPSs), such as those of the spleen. Accumulation of considerable amounts of liposome in a MPS can affect immunologic response. While developing a liposomal oxygen carrier containing human hemoglobin vesicle (HbV), we identified its suppressive effect on the proliferation of rat splenic T cells. The aim of this study was to elucidate the mechanism underlying that phenomenon and its effect on both local and systemic immune response. For this study, we infused HbV intravenously at a volume of 20% of whole blood or empty liposomes into rats, removed their spleens, and evaluated T cell responses to concanavalin A (Con A) or keyhole limpet hemocyanin (KLH) by measuring the amount of [(3)H]thymidine incorporated into DNA. Cells that phagocytized liposomal particles were sorted using flow cytometry and analyzed. Serum anti-KLH antibody was measured after immunizing rats with KLH. Results showed that T cell proliferation in response to Con A or KLH was inhibited from 6 h to 3 days after the liposome injection. Direct cell-to-cell contact was necessary for the suppression. Both inducible nitric-oxide synthase and arginase inhibitors restored T cell proliferation to some degree. The suppression abated 7 days later. Cells that trapped vesicles were responsible for the suppression. Most expressed CD11b/c but lacked class II molecules. However, the primary antibody response to KLH was unaffected. We conclude that the phagocytosis of the large load of liposomal particles by rat CD11b/c+, class II immature monocytes temporarily renders them highly immunosuppressive, but the systemic immune response was unaffected.
    Journal of Pharmacology and Experimental Therapeutics 03/2011; 337(1):42-9. DOI:10.1124/jpet.110.172510 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type-1 immunity has an essential role for our host defenses against cancer and outer pathogens such as bacteria and virus. We demonstrated here that the edible plant extract of Chrysanthemum coronarium L. (C. coronarium) remarkably activates Type-1 immunity in a Toll-like receptor (TLR)2-, TLR4-, and TLR9-dependent manner. In the present experiments, the extract of C. coronarium significantly induces interferon (IFN)-γ production by mouse spleen cells. In addition, the IFN-γ production by spleen cells was completely blocked by the addition of anti-Interleukin (IL)-12 monoclonal antibodies. We confirmed that NK1.1(+) natural killer (NK) cells, NKT cells, and CD11c(+) dendritic cells (DC) were immediately activated after the stimulation with the extract of C. coronarium and the IFN-γ production was abolished in NK1.1(+) cell-depleted spleen cells. The stimulation with the extract of C. coronarium caused DC maturation involving with up-regulations of surface expression levels of MHC class I, MHC class II, CD40, and CD86 as well as induction of IL-12 production. The IFN-γ production induced by the extract was significantly reduced in the spleen cells depleted CD11c(+) cells. Furthermore, the IFN-γ production after the stimulation was strongly reduced in TLR4- and partially in TLR2- and TLR9-deficient spleen cells. Thus, we demonstrated the cellular mechanism for the activation of Type-1 immunity via NK cells, NKT cells, and DC by the extract of C. coronarium. These findings strongly suggest that C. coronarium would be a promising immuno-improving adjuvant, which might be useful for prevention of infectious, cancer, and allergic diseases through the activation of Type-1 immunity.
    International immunopharmacology 02/2011; 11(2):226-32. DOI:10.1016/j.intimp.2010.11.026 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The balance between immune activation and suppression must be regulated to maintain immune homeostasis. Tissue macrophages (MΦs) constitute the major cellular subsets of APCs within the body; however, how and what types of resident MΦs are involved in the regulation of immune homeostasis in the peripheral lymphoid tissues are poorly understood. Splenic red pulp MΦ (RPMs) remove self-Ags, such as blood-borne particulates and aged erythrocytes, from the blood. Although many scattered T cells exist in the red pulp of the spleen, little attention has been given to how RPMs prevent harmful T cell immune responses against self-Ags. In this study, we found that murine splenic F4/80(hi)Mac-1(low) MΦs residing in the red pulp showed different expression patterns of surface markers compared with F4/80(+)Mac-1(hi) monocytes/MΦs. Studies with purified cell populations demonstrated that F4/80(hi)Mac-1(low) MΦs regulated CD4(+) T cell responses by producing soluble suppressive factors, including TGF-β and IL-10. Moreover, F4/80(hi)Mac-1(low) MΦs induced the differentiation of naive CD4(+) T cells into functional Foxp3(+) regulatory T cells. Additionally, we found that the differentiation of F4/80(hi)Mac-1(low) MΦs was critically regulated by CSF-1, and in vitro-generated bone marrow-derived MΦs induced by CSF-1 suppressed CD4(+) T cell responses and induced the generation of Foxp3(+) regulatory T cells in vivo. These results suggested that splenic CSF-1-dependent F4/80(hi)Mac-1(low) MΦs are a subpopulation of RPMs and regulate peripheral immune homeostasis.
    The Journal of Immunology 02/2011; 186(4):2229-37. DOI:10.4049/jimmunol.1001345 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1α,25-Dihydroxyvitamin D(3) (1,25D3), the active form of vitamin D(3), is an immunoregulatory hormone with beneficial effects on Th1 cell-mediated inflammatory diseases. Although IL-17-producing CD4(+) T helper (Th17) cells have been recently identified as novel effector cells, the immunomodulating effects of 1,25D3 on Th17 cells have not been well defined. We confirmed here that 1,25D3 inhibited the generation of Th17 cells in vitro. Interestingly, 1,25D3 synergistically suppressed the generation of Th17 cells by the combination with all-trans retinoic acid (ATRA). 1,25D3 and ATRA suppressed the development of allergen-induced contact hypersensitivity (CHS) in a mouse ear swelling model. In addition, we found that 1,25D3 and ATRA significantly inhibited the development of human Th17 cells from both naïve and memory human CD4(+) T cells. 1,25D3 and ATRA effectively suppressed mRNA expressions of IL-1R1, IL-21R, IL-23R, RORC, and AHR in human T cells. ATRA further suppressed IL-6R, whereas 1,25D3 did not. Finally, we found that 1,25D3 and ATRA remarkably blocked IL-22 as well as IL-17 mRNA expression in human memory CD4(+) T cells. Thus, we initially reveal that 1,25D3 and ATRA have synergistic effects on the generation of Th17 cells, suggesting that the combination with ATRA would provide a promising novel therapy for Th17 cell-related immune diseases including skin inflammation.
    Immunology letters 11/2010; 134(1):7-16. DOI:10.1016/j.imlet.2010.07.002 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the search for immuno-improving foods, we found that a variety of the Japanese soybean, Glycine max cv. Kurosengoku (Kurosengoku), which activated Type-1 immunity in a Toll-like receptor (TLR)4- and TLR2-dependent manner. Namely, the extract of Kurosengoku first caused production of IL-12 from DC and sequentially induced IFN-γ production by NK1.1(+) NK cells and NKT cells. The IFN-γ production was significantly blocked by neutralizing mAb against IL-12 or TLR4- and TLR2-deficient condition, indicating that TLR4- and TLR2-dependent activation of DC to produce IL-12 was essential for the production of IFN-γ from spleen cells by Kurosengoku. Moreover, the extract of Kurosengoku also enhanced production of IFN-γ from human PBMC by co-stimulation with anti-CD3 mAb in a TLR2- and TLR4-dependent manner. Thus, our findings strongly suggest that Kurosengoku might a novel immuno-improving food, which would be a useful tool for preventing the tip of immune balance in developed countries.
    Cellular Immunology 10/2010; 266(2):135-42. DOI:10.1016/j.cellimm.2010.09.009 · 1.92 Impact Factor

Publication Stats

4k Citations
475.34 Total Impact Points


  • 1999-2014
    • Hokkaido University
      • • Institute for Genetic Medicine
      • • Institute of Immunological Science
      Sapporo, Hokkaidō, Japan
  • 2008
    • Asubio Pharma Co., Ltd.
      Kōbe, Hyōgo, Japan
  • 1991-1999
    • Tokai University
      • School of Medicine
      Hiratuka, Kanagawa, Japan
  • 1993
    • KYOWA HAKKO BIO Co., Ltd.
      Edo, Tōkyō, Japan
  • 1985-1990
    • Tohoku University
      • • Department of Chemistry
      • • Graduate School of Pharmaceutical Sciences
      Sendai-shi, Miyagi, Japan