Uma V Katre

Auburn University, Auburn, AL, United States

Are you Uma V Katre?

Claim your profile

Publications (9)47.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pheromone-binding proteins (PBPs) in lepidopteran moths selectively transport the hydrophobic pheromone molecules across the sensillar lymph to trigger the neuronal response. Moth PBPs are known to bind ligand at physiological pH and release it at acidic pH while undergoing a conformational change. Two molecular switches are considered to play a role in this mechanism: (i) Protonation of His70 and His95 situated at one end of binding pocket, and (ii) Switch of the unstructured C-terminus at the other end of the binding pocket to a helix that enters the pocket. We have reported previously the role of the histidine-driven switch in ligand release for Antheraea polyphemus PBP1 (ApolPBP1). Here we show that the C-terminus plays a role in ligand release and binding mechanism of ApolPBP1. The C-terminus truncated mutants of ApolPBP1 (ApolPBP1ΔP129-V142 and ApolPBP1H70A/H95AΔP129-V142) exist only in the bound conformation at all pH levels, and they fail to undergo pH- or ligand- dependent conformational switch. Although these proteins could bind ligands even at acidic pH unlike the wild-type ApolPBP1, they had ~4 fold reduced affinity towards the ligand at both acidic and physiological pH than that of ApolPBP1wt and ApolPBP1H70A/H95A. Thus, apart from helping in the ligand-release at acidic pH, the C-terminus in ApolPBP1 also plays an important role in ligand binding and/or locking the ligand in the binding pocket. Our results are in stark contrast to those reported for BmorPBP and AtraPBP, where C-terminus truncated proteins had similar or increased pheromone-binding affinity at any pH.
    Biochemistry 01/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction. In eukaryotes, oligosaccharyl transferase (OT), a multi-subunit membrane-associated enzyme complex, catalyzes this reaction in newly synthesized proteins. In Saccharomyces cerevisiae, OT consists of nine nonidentical membrane proteins. Ost4p, the smallest subunit, bridges the catalytic subunit Stt3p with Ost3p. Mutation of transmembrane residues 18-24 in Ost4p has negative effect on OT activity, disrupts the Stt3p-Ost4p-Ost3p complex, results in temperature-sensitive phenotype, and hypoglycosylation. Heterologous expression and purification of integral membrane proteins are the bottleneck in membrane protein research. The authors report the cloning, successful overexpression and purification of recombinant Ost4p with a novel but simple method producing milligram quantities of pure protein. GB1 protein was found to be the most suitable tag for the large scale production of Ost4p. The cleavage of Ost4p conveniently leaves GB1 protein in solution eliminating further purification. The precipitated pure Ost4p is reconstituted in appropriate membrane mimetic. The recombinant protein is highly helical as indicated by the far-UV CD spectrum. The well-dispersed heteronuclear single quantum coherence spectrum indicates that this minimembrane protein is well-folded. The successful production of pure recombinant Ost4p with a novel yet simple method may have important ramification for the production of other membrane proteins.
    Biopolymers 02/2012; 97(7):499-507. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the “open” (bound) conformation at high pH but switches to the “closed” (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of ∼1:1. Mutation of His70 and His95 to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
    Journal of Biological Chemistry 11/2009; 284(46):32167-32177. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
    Journal of Biological Chemistry 09/2009; 284(46):32167-77. · 4.65 Impact Factor
  • Uma V Katre, C G Suresh
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structures of proteins showing homotetrameric association, a common feature observed in many lectins, have been analyzed in order to understand the characteristics of tetrameric association in terms of the arrangement of subunits and their biological significance. The analysis could group the tetramer units into the following four categories. (i) Tetrahedral molecules, in which the four monomers form a nearly perfect tetrahedral arrangement. The angle between the axes of any two monomers is approximately 109 degrees. (ii) Molecules that form a sandwiched dimer of dimers in which the two dimers are arranged perpendicular to each other, one upon the other. (iii) Planar molecules, in which the four monomers lie in one plane and the corresponding sides of adjacent monomers face in opposite directions. This can be considered as a flattened tetrahedral shape. (iv) Planar closed molecules, in which all four monomers lie in one plane arranged in a head-to-tail fashion in a square. The first group and its variant, the third group, are the most commonly found arrangements in crystal structures. Each arrangement has its own importance for biological function. Some tetrameric assemblies that deviate from the majority described above also have relevance to their biological function.
    Acta Crystallographica Section D Biological Crystallography 02/2009; 65(Pt 1):1-10. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hemagglutinin from the seeds of Moringa oleifera (MoL) agglutinates human as well as rabbit erythrocytes; the affinity for the latter is almost 250 times more than that for the former. MoL was inhibited by glycoproteins namely thyroglobulin, fetuin and holotransferin indicating the complex sugar specificity of the lectin. The protein is a homodimer with molecular mass of 14kDa, subunits (7.1kDa) linked by the disulfide bond(s). The secondary structure elements of MoL are alpha-helix, 28%; beta-sheet, 23%; turn 20% and unordered 28%. While the activity and secondary structure were not affected at extreme pH and high temperature, they were drastically affected in presence of dithiothreitol at and above pH 7.0, indicating that disulfide linkages hold the active conformation of the protein.
    International Journal of Biological Macromolecules 04/2008; 42(2):203-7. · 2.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The saccharide binding and conformational characterization of a hemagglutinin, a low molecular weight protein from the seeds of Moringa oleifera was studied using steady state and time resolved fluorescence. The lectin binds sugars LacNAc (K (a) = 1380 M(-1)) and fructose (K (a) = 975 M(-1)), as determined by the fluorescence spectroscopy. It has a single tryptophan per monomer which is exposed on the surface and is in a strong electropositive environment as revealed by quenching with iodide. Quenching of the fluorescence by acrylamide involved both static (K (s) = 0.216 M(-1)) and collisional (K (sv) = 8.19 M(-1)) components. The native protein showed two different lifetimes, tau (1) (1.6 ns) and tau (2) (4.36 ns) which decrease and get converted into a single one, (2.21 ns) after quenching with 0.15 M acrylamide. The bimolecular quenching constant, k ( q ) was 7.55 x 10(11) M(-1) s(-1). ANS binding studies showed that the native protein has exposed hydrophobic patches which get further exposed at extreme acidic or alkaline pH. However, they get buried in the interior of the protein in presence of 1 M GdnHCl or urea.
    Journal of Fluorescence 04/2008; 18(2):479-85. · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lectin isolated from mature seeds of Cicer arietinum (CAL) agglutinates pronase-treated rabbit and human erythrocytes and its haemagglutination activity is inhibited by fetuin and desialated fetuin but not by simple monosaccharides or oligosaccharides. The purified lectin is a dimer of molecular weight 43,000 Da composed of two identical subunits (MW 21,500), as confirmed by SDS-PAGE. The lectin has been crystallized using the hanging-drop vapour-diffusion method at 295 K over a well solution containing 0.2 M sodium acetate, 0.1 M sodium phosphate buffer pH 6.5 and 14%(w/v) polyethylene glycol 8000. The triangular prism-shaped crystals belong to space group R3 and have unit-cell parameters a = b = 81.2, c = 69.4 A. The diffraction data are 93.8% complete to 2.3 A Bragg spacing with an Rmerge of 0.103.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 02/2005; 61(Pt 1):141-3. · 0.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on their carbohydrate specificity, the jacalin family of lectins can be divided into two groups: galactose-specific and mannose-specific. The former are cytoplasmic proteins, whereas the latter are localized in the storage vacuoles of cells. It has been proposed that the post-translational modification in some of the lectins that splits their polypeptide chains into two may be crucial for galactose specificity. The mannose-specific members of the family are single-chain proteins that lack the above modification. Although the galactose-specific and the mannose-specific jacalin-type lectins differ in their sequences, they share a common fold: the beta-prism I fold, which is characteristic of Moraceae plant lectins. Here, two crystal structures of a jacalin-related lectin from Artocarpus hirsuta, which is specific for galactose, in complex with methyl-alpha-D-galactose are reported. The lectin crystallized in two orthorhombic forms and one hexagonal form under similar conditions. The crystals had an unusually high solvent content. The structure was solved using the molecular-replacement method using the jacalin structure as a search model. The two orthorhombic forms were refined using data to 2.5 and 3.0 A resolution, respectively. The structures of the A. hirsuta lectin and jacalin are identical. In orthorhombic form I the crystal packing provides three different micro-environments for sugar binding in the same crystal. The observed difference in the specificity for oligosaccharides between the A. hirsuta lectin and jacalin could only be explained based on differences in the molecular associations in the packing and variation of the C-terminal length of the beta-chain. The observed insecticidal activity of A. hirsuta lectin may arise from its similar fold to domain II of the unrelated delta-endotoxin from Bacillus thuringiensis.
    Acta Crystallographica Section D Biological Crystallography 09/2004; 60(Pt 8):1404-12. · 14.10 Impact Factor