Hiroki Kimoto

The University of Tokushima, Tokusima, Tokushima, Japan

Are you Hiroki Kimoto?

Claim your profile

Publications (8)19.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the postnatal alterations of neuronal nuclei (NeuN)-positive neurons, parvalbumin (PV)-positive interneurons, neuronal nitric oxide synthase (nNOS)-positive interneurons, and neurotrophic factors in the mouse striatum and frontal cortex using immunohistochemistry. NeuN, PV, nNOS, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse striatum and frontal cortex from 1 up to 8 weeks of age. In contrast, a significant decrease in the number of PV-positive interneurons was observed in the striatum and frontal cortex of 1-, 2- and 4-week-old mice. Furthermore, a significant increase of nNOS-positive interneurons was found in the striatum and frontal cortex of 1- and/or 2-week-old mice. NGF-positive neurons were unchanged in the mouse striatum from 1 up to 8 weeks of age. In the frontal cortex, a significant increase in the number of NGF-positive neurons was observed only in 1-week-old mice. In contrast, a significant increase in the number of NGF-positive glia 1 cells was found in the striatum and frontal cortex of 4-week-old mice. Our double-labeled immunostaining showed that nNOS immunoreactivity was not found in PV-immunopositive interneurons. Furthermore, BDNF immunoreactivity was observed in both nNOS-positive and PV-positive interneurons in the striatum of 1- or 2-week-old mice. These results show that the maturation of nNOS-immunopositive interneurons precedes the maturation of PV-immunopositive interneurons in the striatum and frontal cortex during postnatal development. Furthermore, our results demonstrate that the expression of BDNF may play some role in the maturation of interneurons in the striatum and frontal cortex during postnatal development. Moreover, our findings suggest that the expression of NGF in glia cells may play some role in the maturation of glial cells and PV-positive interneurons in the striatum and frontal cortex during postnatal development.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 08/2010; 28(5):359-70. DOI:10.1016/j.ijdevneu.2010.04.004 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the biochemical alterations of the striatum of mice subjected to seven experimental schedules with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment. The mice were treated intraperitoneally (i.p.) with MPTP (20 mg/kg in saline) four times a day at 2-hr intervals showed severe and persistent depletions of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum, as compared with those (1) treated with MPTP (15 mg/kg in saline, i.p.) once a day for 14 consecutive days; (2)MPTP (30 mg/kg in saline, i.p.) twice a day for 5 consecutive days; (3) MPTP (10 mg/kg in saline, i.p.) four times a day at 1-hr intervals for 2 consecutive days; (4) MPTP (20 mg/kg in saline, i.p.) once a day for 4 consecutive days; (5) MPTP (20 mg/kg in saline, i.p.) twice a day for 2 consecutive days; (6) MPTP (20 mg/kg in saline, i.p.) twice a day for 4 consecutive days. In our Western blot analysis, furthermore, the mice that received MPTP (20 mg/kg in saline) four times a day at 2-hr intervals showed a severe decrease of the striatal tyrosine hydroxylase (TH) protein levels and a significant increase of the striatal glial fibrillary acidic protein (GFAP) levels. These results demonstrate that the model with acute MPTP treatment can cause severe neuronal damage in the mouse striatum, as compared to the model with continuous treatment with MPTP. Thus our findings may support the validity of acute MPTP treatment model for unraveling in the neurodegenerative processes in PD.
    Metabolic Brain Disease 06/2010; 25(2):177-83. DOI:10.1007/s11011-010-9195-9 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2',3'-cyclic nucleotide 3'-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.
    Cellular and Molecular Neurobiology 04/2010; 30(6):917-28. DOI:10.1007/s10571-010-9521-0 · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient focal cerebral ischaemia can cause neuronal damage in remote areas, including the ipsilateral thalamus and subsutantia nigra, as well as in the ischaemic core. In the present study, we investigated long-term changes in the ipsilateral substantia nigra from 1 up to 20 weeks after 90 min of transient focal cerebral ischaemia in rats, using tyrosine hydroxylase (TH), neuronal nuclei (NeuN), Iba-1, glial fibrillary acidic protein (GFAP) and brain-derived neurotrophic factor (BDNF) immunostaining. These results show that transient focal cerebral ischaemia in rats can cause a severe and prolonged neuronal damage in the ipsilateral striatum. Our results with TH and NeuN immunostaining also demonstrate that the atrophy of the ipsilateral substantia nigra after transient focal cerebral ischaemia was not static but progressive. Furthermore, our double-labelled immunohistochemical study suggests that BDNF released by GFAP-positive astrocytes may play a key role in the survival of dopaminergic neurones in the ipsilateral substantia nigra at the chronic stage after transient focal cerebral ischaemia, although the areas of the ipsilateral substantia nigra are decreased progressively after ischaemia. Thus our study provides further valuable information for the pathogenesis of neuronal damage after transient focal cerebral ischaemia.
    International Journal of Experimental Pathology 03/2010; 91(3):256-66. DOI:10.1111/j.1365-2613.2010.00712.x · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systematic administration of rotenone as one of pesticides is known to produce degeneration of nigral dopaminergic neurons and motor deficits in experimental animals. Here, we investigated to determine whether systematic administration of rotenone causes the increased susceptibility in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Rotenone was injected into MPTP-treated mice over a period of 4 weeks. Thereafter, we evaluated the effect of rotenone 1, 3, and 6 weeks after the cessation of treatment with rotenone. In the present study with HPLC analysis, rotenone did not enhance MPTP-induced dopaminergic neurotoxicity in mice. Furthermore, MPTP + rotenone (9 mg/kg)-treated mice exhibit a significant loss of motor activity 1 day after the cessation of treatment with rotenone, However, no significant change of motor activity was found in MPTP-treated and MPTP + rotenone (9 mg/kg)-treated animals 6 weeks after the cessation of treatment with 0.5% carboxymethyl cellulose or rotenone. Our Western blot analysis study demonstrated that the change of tyrosine hydroxylase and glial fibrillary acidic protein protein levels in MPTP-treated mice was similar than that in MPTP + rotenone-treated animals. These results suggest that rotenone did not enhance MPTP neurotoxicity in mice. Our findings suggest that rotenone is not a reliable model for PD. Thus, our findings provide further valuable information for the pathogenesis of PD for exposure to agricultural pesticides.
    Journal of Molecular Neuroscience 08/2009; 41(1):17-24. DOI:10.1007/s12031-009-9220-9 · 2.76 Impact Factor
  • Hiroki Kimoto · Risa Eto · Manami Abe · Hiroyuki Kato · Tsutomu Araki
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the postnatal alterations of neurons, astrocyte, oligodendrocyte, and microglia in the mouse hippocampal CA1 sector and dentate gyrus under the same conditions using immunohistochemistry. Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), and ionized calcium binding adaptor molecule 1 (Iba 1) immunoreactivity were measured in 1-, 2-, 4-, and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse hippocampal CA1 sector and dentate gyrus from 1 to 8 weeks of birth. In contrast, a significant increase in the number of GFAP-positive astrocytes was observed only in the hippocampal CA1 sector of 1-week-old mice when compared with 8-week-old animals. Thereafter, total number of GFAP-positive astrocytes was unchanged in the hippocampal CA1 sector and dentate gyrus from 2 to 8 weeks of birth. For microglia, a significant increase in the number of Iba 1-positive microglia was observed in the hippocampal CA1 sector and dentate gyrus of 1-, 2-, and 4-week-old mice as compared with 8-week-old animals. On the other hand, a significant decrease in the area of expression of CNPase-positive fibers was observed in the hippocampal CA1 sector of 1- and 2-week-old mice as compared with 8-week-old animals. In dentate gyrus, a significant decrease in the area of expression of CNPase-positive fibers was found in 1-, 2-, and 4-week-old mice. Furthermore, our double-labeled immunostaining showed that brain-derived neurotrophic factor (BDNF) immunoreactivity was observed in GFAP-positive astrocytes and Iba 1-positive microglia in the hippocampal CA1 sector and dentate gyrus of 1- and 2-week-old mice. These results show that glial cells may play some role in the maintenance and neuronal functions of hippocampal CA1 pyramidal neurons and granule cells of dentate gyrus during postnatal development. Furthermore, our results demonstrate that glial BDNF may play an important role in the maturation of oligodendrocyte in the hippocampal CA1 sector and dentate gyrus during postnatal development. Thus, our findings provide valuable information on the developmental processes.
    Cellular and Molecular Neurobiology 06/2009; 29(8):1181-9. DOI:10.1007/s10571-009-9412-4 · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated to determine whether acute administration of proteasome inhibitor can cause dopaminergic cell loss in mice, in comparison with that of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The four intraperitoneally administrations of MPTP at 1-h intervals to mice decreased significantly the concentration of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum after 5 days, in comparison with vehicle-treated animals. In contrast, the three subcutaneously administrations of carbobenzoxy-L-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) did not show significant changes in the concentration of dopamine, DOPAC and HVA in the striatum after 5 days, in comparison with vehicle-treated animals. Our Western blot analysis also showed that the four administrations of MPTP at 1-h intervals to mice produced a significant reduction of anti-tyrosine hydroxylase antibody (TH) protein levels in the striatum after 5 days after. In PSI-treated mice. In contrast, no significant change of TH protein levels was observed in the striatum 5 days after the final treatment with PSI. Furthermore, a significant decrease of TH protein levels was observed in the striatum of MPTP-treated mice, as compared with PSI-treated animals. The present study demonstrates that the acute treatment with proteasome inhibitor PSI did not cause the dopaminergic neurotoxicity in mice, as compared with acute treatment with MPTP. Thus, our findings suggest that acute proteasome inhibition is not a reliable model for Parkinson's disease.
    Metabolic Brain Disease 07/2008; 23(2):147-54. DOI:10.1007/s11011-008-9082-9 · 2.40 Impact Factor
  • S Takagi · N Hayakawa · H Kimoto · H Kato · T Araki
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the alteration of oligodendrocytes in comparison with that of astrocytes and microglia in the mouse striatum after MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropridine) treatment under the same conditions using Western blot analysis and Immunohistochemistry. In our Western blot analysis, four administrations of MPTP at 2-h intervals to mice produced the remarkable loss of TH (tyrosine hydroxylase) protein levels in the striatum after 3 and 7 days. In contrast, GFAP (glial fibrillary acidic protein) and Iba-1 protein in the striatum showed a significant increase of GFAP and Iba-1 protein levels 3 and 7 days after MPTP treatment. On the other hand, the levels of CNPase (2', 3'-cyclic nucleotide 3'-phosphodiesterase) protein were decreased significantly in the striatum 3 and 7 days after MPTP treatment. In our immunohistochemical study, a significant decrease in the area of expression of CNPase-positive profiles was observed in the striatum 3 and 7 days after MPTP treatment. These results demonstrate that oligodendrocytes in the striatum are damaged after MPTP treatment. Thus our present findings provide valuable information for the pathogenesis of Parkinson's disease.
    Journal of Neural Transmission 02/2007; 114(12):1553-7. DOI:10.1007/s00702-007-0790-9 · 2.87 Impact Factor