Gabriele Stocco

Università degli Studi di Trieste, Trieste, Friuli Venezia Giulia, Italy

Are you Gabriele Stocco?

Claim your profile

Publications (40)202.32 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: For children with juvenile idiopathic arthritis (JIA) who fail to respond to methotrexate, the delay in identifying the optimal treatment at an early stage of disease can lead to long-term joint damage. Recent studies indicate that relevant variants to predict methotrexate response in JIA are those in 5-aminoimidazole-4-carboxamide ribonucleotide-transformylase (ATIC), inosine-triphosphate-pyrophosphatase (ITPA) and solute-liquid-carrier-19A1 genes. The purpose of the study was, therefore, to explore the role of these candidate genetic factors on methotrexate response in an Italian cohort of children with JIA. Clinical response to methotrexate was evaluated as clinical remission stable for a 6-month period, as ACRPed score and as change in Juvenile Arthritis Disease score. The most relevant SNPs for each gene considered were assayed on patients' DNA. ITPA activity was measured in patients' erythrocytes. Sixty-nine patients with JIA were analyzed: 52.2 % responded to therapy (ACRPed70 score), while 37.7 % reached clinical remission stable for 6 months. ATIC rs2372536 GG genotype was associated with improved clinical remission (adjusted p value = 0.0090). For ITPA, rs1127354 A variant was associated with reduced clinical remission: (adjusted p value = 0.028); this association was present even for patients with wild-type ITPA and low ITPA activity. These preliminary results indicate that genotyping of ATIC rs2372536 and ITPA rs1127354 variants or measuring ITPA activity could be useful to predict methotrexate response in children with JIA after validation by further prospective studies on a larger patient cohort.
    Rheumatology international. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed.
    World Journal of Gastroenterology 04/2014; 20(13):3534-3541. · 2.55 Impact Factor
  • Article: Commentary.
    Gabriele Stocco
    Clinical Chemistry 07/2013; 59(7):1027. · 7.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate, in young patients with inflammatory bowel disease (IBD) treated with azathioprine, the association between genetic polymorphisms of thiopurine-S-methyl-transferase (TPMT), inosine-triphosphate-pyrophosphatase (ITPA), and glutathione-S-transferases (GST), involved in azathioprine metabolism, the concentration of the main metabolites of azathioprine, thioguanine nucleotides (TGNs) and the methylated nucleotides (MMPN), and the dose of the medication. Azathioprine is widely used in IBD as an immunosuppressive agent, particularly to maintain remission in patients with steroid refractory disease. Azathioprine is a prodrug and requires conversion to its active form mercaptopurine, which has no intrinsic activity, and is activated by the enzymes of the purine salvage pathway to TGNs. Polymorphisms in genes of enzymes involved in azathioprine metabolism influence the efficacy and toxicity of treatment. Seventy-five young patients with IBD treated with azathioprine at least for 3 months were enrolled and genotyped for the selected genes; for these patients, TGN and MMPN metabolites were measured by high performance liquid chromatography in erythrocytes. GST-M1 deletion was associated with lower TGN/dose ratio (P=0.0030), higher azathioprine dose requirement (P=0.022), and reduced response to therapy (P=0.0022). TPMT variant genotype was associated with lower MMPN concentration (P=0.0064) and increased TGN/dose ratio (P=0.0035). ITPA C94A polymorphism resulted in an increased MMPN concentration (P=0.037). This study describes the effect of candidate genetic polymorphisms in TPMT, ITPA, and GST-M1 on azathioprine pharmacokinetics in IBD patients, showing, for the first time, relevant effects of GST-M1 genotype on azathioprine metabolites concentration.
    Journal of clinical gastroenterology 06/2013; · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several lympholytic and cytotoxic agents are used in acute lymphoblastic leukemia (ALL) polychemotherapy. Genetic variants for any of the cellular components involved in the pharmacokinetics and pharmacodynamics of these drugs can influence the pharmacological response, and molecular characterization of these genetic variants could be helpful for the comprehension of the mechanism of resistance or increased sensitivity. The purpose of this review is to carry out an update of recent publications on genes that might influence ALL treatment in terms of outcome and/or toxicity and to underlie the role of genetic variants, particularly single nucleotide polymorphisms (SNP), in predicting clinical response, with particular reference to the current protocol for ALL therapy used in Italy, AIEOP-BFM ALL 2009.
    Current Medicinal Chemistry 02/2013; · 3.72 Impact Factor
  • Pharmacogenomics 02/2013; 14(3):237-8. · 3.86 Impact Factor
  • Pharmacogenomics 02/2013; 14(3):238-9. · 3.86 Impact Factor
  • Pharmacogenomics 02/2013; 14(3):235-9. · 3.86 Impact Factor
  • Pharmacogenomics 02/2013; 14(3):236-7. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Etiological periodontal therapy is effective in reducing cyclosporin A-induced gingival overgrowth, but a high variability among subjects has been observed. This study aimed to evaluate the role of polymorphisms in PAI-1 and A BCB1 genes on the course of this side effect following periodontal therapy. Method and Materials: Forty-five transplant patients were subjected to nonsurgical periodontal therapy and evaluated for hypertrophy index, probing depths, bleeding, and plaque scores at baseline, and after 3 and 6 months. A BCB1 (C3435T and G2677T) and PAI-1 (4G/5G) polymorphisms were studied with polymerase chain reaction-restriction fragment length polymorphism and allele-specific polymerase chain reaction respectively. Results: All the monitored periodontal indexes decreased significantly during the six months. Modeling of hypertrophy index by linearmixed- effect models (allowing non-normal distribution of the outcome variable hypertrophy index) resulted in the selection as the most significant model, of the one comprising the independent variables: time, C 3435T genotype, and their interaction term. This model indicated that C 3435T-mutated patients had significantly higher baseline hypertrophy index values (90% Markov chain Monte C arlo empirical confidence intervals: 5.08, 30.00). The decrease in hypertrophy index values over time showed a trend toward being faster in mutated than nonmutated patients (interaction time: C 3435T nonmutated, 90% Markov chain Monte C arlo empirical confidence interval: -11.08, -0.40). When hypertrophy index values were normalized, the significance and trend were lost. No effect of the A BCB1 G2677T and PAI-1 4G/5G polymorphisms was observed. Conclusion: These preliminary results suggest that C 3435T polymorphism is a genetic factor that could influence the course of cyclosporin A-induced gingival overgrowth in transplant patients subjected to periodontal therapy.
    Quintessence international (Berlin, Germany: 1985) 01/2013; 44(3):249-60. · 0.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy.
    Human Molecular Genetics 07/2012; 21(21):4793-804. · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric inflammatory and autoimmune diseases are a wide array of systemic or organ-specific conditions, characterized by an exaggerated immune reactivity, which generally occurs in immunogenetically predisposed children. Among the most important ones, in terms of their diffusion and morbidity in the population worldwide, pediatric inflammatory bowel disease (IBD) and juvenile rheumatoid arthritis (JRA) have to be considered. The aim of personalized therapy is to give to each patient the most appropriate drug and dose regimen, in order to maximize treatment response and reduce the risk of adverse events. In general, several therapeutic options exist for pediatric inflammatory and autoimmune conditions, therefore the perspective of pharmacological tools that allow identification of patients with increased risk of treatment issues related to a particular medication, in terms of lack of efficacy or increased probability of adverse events, is particularly desirable and promising. The present review will be focused on the personalized therapy approaches already available or in development for pediatric patients with IBD or JRA, comprising pharmacokinetic, pharmacodynamic and pharmacogenetic assays.
    Current pharmaceutical design 06/2012; · 4.41 Impact Factor
  • Source
    Alimentary Pharmacology & Therapeutics 04/2012; 35(8):966-7; author reply 967-9. · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review.
    Frontiers in Genetics 01/2012; 3:309.
  • Source
    Clinical Pharmacology &#38 Therapeutics 09/2011; 90(3):461-6. · 6.85 Impact Factor
  • Source
    Gabriele Stocco, Kristine R Crews
    Pediatric Blood & Cancer 07/2011; 57(7):1247. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GCs) are used in moderate-to-severe inflammatory bowel diseases (IBD) but their effect is often unpredictable. To determine the influence of 4 polymorphisms in the GC receptor [nuclear receptor subfamily 3, group C, member 1 (NR3C1)], interleukin-1β (IL-1β), and NACHT leucine-rich-repeat protein 1 (NALP1) genes, on the clinical response to steroids in pediatric patients with IBD. One hundred fifty-four young IBD patients treated with GCs for at least 30 days and with a minimum follow-up of 1 year were genotyped. The polymorphisms considered are the BclI in the NR3C1 gene, C-511T in IL-1β gene, and Leu155His and rs2670660/C in NALP1 gene. Patients were grouped as responder, dependant, and resistant to GCs. The relation between GC response and the genetic polymorphisms considered was examined using univariate, multivariate, and Classification and Regression Tree (CART) analysis. Univariate analysis showed that BclI polymorphism was more frequent in responders compared with dependant patients (P=0.03) and with the combined dependant and resistant groups (P=0.02). Moreover, the NALP1 Leu155His polymorphism was less frequent in the GC responsive group compared with resistant (P=0.0059) and nonresponder (P=0.02) groups. Multivariate analysis comparing responders and nonresponders confirmed an association between BclI mutated genotype and steroid response (P=0.030), and between NALP1 Leu155His mutant variant and nonresponders (P=0.033). An association between steroid response and male sex was also observed (P=0.034). In addition, Leu155His mutated genotype was associated with steroid resistance (P=0.034). Two CART analyses supported these findings by showing that BclI and Leu155His polymorphisms had the greatest effect on steroid response (permutation P value=0.046). The second CART analysis also identified age of disease onset and male sex as important variables affecting response. These results confirm that genetic and demographic factors may affect the response to GCs in young patients with IBD and strengthen the importance of studying high-order interactions for predicting response.
    Journal of clinical gastroenterology 01/2011; 45(1):e1-7. · 2.21 Impact Factor
  • Steven W Paugh, Gabriele Stocco, William E Evans
    [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic index of many medications, especially in children, is very narrow with substantial risk for toxicity at doses required for therapeutic effects. This is particularly relevant to cancer chemotherapy, when the risk of toxicity must be balanced against potential suboptimal (low) systemic exposure that can be less effective in patients with higher rates of drug clearance. The purpose of this review is to discuss genetic factors that lead to interpatient differences in the pharmacokinetics and pharmacodynamics of these medications. Genome-wide agonistic studies of pediatric patient populations are revealing genome variations that may affect susceptibility to specific diseases and that influence the pharmacokinetic and pharmacodynamic characteristics of medications. Several genetic factors with relatively small effect may be combined in the determination of a pharmacogenomic phenotype and considering these polygenic models may be mandatory in order to predict the related drug response phenotypes. These findings have potential to yield new insights into disease pathogenesis, and lead to molecular diagnostics that can be used to optimize the treatment of childhood cancers. Advances in genome technology, and their comprehensive and systematic deployment to elucidate the genomic basis of interpatient differences in drug response and disease risk, hold great promise to ultimately enhance the efficacy and reduce the toxicity of drug therapy in children.
    Current opinion in pediatrics 12/2010; 22(6):703-10. · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Azathioprine is a thiopurine immunosuppressive antimetabolite used to chronically treat inflammatory bowel disease and autoimmune hepatitis. Azathioprine treatment is a long-term therapy and therefore it is at risk for non-adherence, which is considered an important determinant of treatment inefficacy. Measurement of 6-thioguanine and 6-methylmercaptopurine nucleotides has been recently suggested as a screener for non-adherence detection. We describe four young patients in which non-adherence to azathioprine therapy was detected only through the measurement of drug metabolite concentrations, and the criterion for non-adherence was undetectable metabolite levels. After the identification of non-adherence, patients and their families were approached and the importance of a correct drug administration was thoroughly enlightened and discussed; this allowed obtaining a full remission in all subjects. Our observations support the use of undetectable metabolite levels as indicators of non-adherence to therapy in azathioprine treated patients. The additional level of medical supervision given by this assay allows getting a better adherence to medical treatment, which results in an improvement in the response to therapy; these benefits may justify the costs associated with the assay.
    Journal of Crohn s and Colitis 11/2010; 4(5):599-602. · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asparaginase is an important component for treatment of childhood acute lymphoblastic leukemia (ALL). The basis for interindividual differences in asparaginase sensitivity remains unclear. To comprehensively identify genetic variants important in the cytotoxicity of asparaginase, we used a genome-wide association approach using the HapMap lymphoblastoid cell lines (87 CEU trio members) and 54 primary ALL leukemic blast samples at diagnosis. Asparaginase sensitivity was assessed as the drug concentration necessary to inhibit 50% of growth (inhibitory concentration (IC)(50)). In CEU lines, we tested 2,390,203 single-nucleotide polymorphism (SNP) genotypes at the individual SNP (P<0.001) and gene level (P<0.05), and identified 329 SNPs representing 94 genes that were associated with asparaginase IC(50). The aspartate metabolism pathway was the most overrepresented among 199 pathways evaluated (P=8.1 × 10(-3)), with primary involvement of adenylosuccinate lyase and aspartyl-tRNA synthetase genes. We validated that SNPs in the aspartate metabolism pathway were also associated with asparaginase sensitivity in primary ALL leukemic blast samples (P=5.5 × 10(-5)). Our genome-wide interrogation of CEU cell lines and primary ALL blasts revealed that inherited genomic interindividual variation in a plausible candidate pathway can contribute to asparaginase sensitivity.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 11/2010; 25(1):66-74. · 10.16 Impact Factor

Publication Stats

381 Citations
202.32 Total Impact Points

Institutions

  • 2006–2013
    • Università degli Studi di Trieste
      • Department of Life Sciences
      Trieste, Friuli Venezia Giulia, Italy
    • IRCCS Ospedale Infantile Burlo Garofolo
      Trst, Friuli Venezia Giulia, Italy
  • 2008–2012
    • St. Jude Children's Research Hospital
      • Department of Pharmaceutical Sciences
      Memphis, Tennessee, United States