Vesa Kataja

University of Eastern Finland, Kuopio, Northern Savo, Finland

Are you Vesa Kataja?

Claim your profile

Publications (188)1487.49 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
    Nature Genetics 03/2015; DOI:10.1038/ng.3242 · 29.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43,160 cases and 42,600 controls of European ancestry ascertained from 52 studies and a further 5,795 cases and 6,624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (OR=0.90 [0.88-0.92]; P-value=1.58 x 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans approximately 14.5 Kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR=1.12 [1.08-1.17]; P-value=7.89 x 10(-09)) and rs13294895 (OR=1.09 [1.06-1.12]; P-value=2.97 x 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR=1.12 [1.06-1.18]; P-value=2.77 x 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 02/2015; DOI:10.1093/hmg/ddv035 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP AURKB BIRC5 and CDCA8) were genotyped in 88,911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk (per A allele OR 0.95 95% CI 1.02-1.10, p=0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, p=0.002). The data suggest that INCENP in the CPC pathway contributes to ER negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions please email: journals.permissions@oup.com.
    Carcinogenesis 01/2015; DOI:10.1093/carcin/bgu326 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management.
    Breast cancer research: BCR 12/2014; 16(6):3419. DOI:10.1186/s13058-014-0474-y · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 12/2014; DOI:10.1016/j.ajhg.2014.11.009 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micro-RNAs are small, noncoding RNAs that act as tumor suppressors or oncogenes. MiR-200c is a member of the miR-200 family; it is known to be dysregulated in invasive breast carcinoma. MiR-200c maintains the epithelial-mesenchymal transition and inhibits cell migration and invasion. Recent studies showed that miR-200c regulated steroid hormone receptors, estrogen receptors (ER), and progesterone receptors (PR). The present study aimed to detect miR-200c in 172 invasive breast carcinoma cases selected from a prospective cohort enrolled in Kuopio, Eastern Finland, between 1990 and 1995. MiR-200c expression was determined with relative q-PCR, and results were compared to clinicopathological variables and patient outcome. We found that PR status combined with miR-200c expression was a significant marker of outcome. High miR-200c expression was associated with reduced survival in PR-negative cases (n = 68); low miR-200c expression indicated reduced survival in PR-positive cases (n = 86) (Cox regression: P = 0.002, OR = 3.433; and P = 0.004, OR = 4.176, respectively). In PR-negative cases, high miR-200c expression was associated with shortened relapse-free survival (Cox regression: P = 0.001, OR = 3.613); increased local/distant recurrence (Logistic regression: P = 0.006, OR = 3.965); and more frequent distant metastasis (Logistic regression: P = 0.015, OR = 3.390). We also found that high grade and low stage tumors were positively correlated with high miR-200c expression (Logistic regression for high grade tumors: P = 0.002, OR = 2.791 and for high stage tumors: P = 0.035, OR = 0.285). Our results indicated that miR-200c may play a role in invasive breast carcinoma. Furthermore, miR-200c combined with PR status provided a refined predictor of outcome. In future, a larger study is required to confirm our results. This data may provide a basis for new research target-progesterone receptor-regulated microRNAs in breast cancer.
    PLoS ONE 10/2014; 9(10):e109508. DOI:10.1371/journal.pone.0109508 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
    Nature Communications 09/2014; · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint ) <1.1×10(-3) . None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women ≥170cm (OR=1.22, p=0.017), but inversely associated with ER-negative BC risk in women <160cm (OR=0.83, p=0.039, pint =1.9×10(-4) ). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR=0.85, p=2.0×10(-4) ), and absent in women who had had just one (OR=0.96, p=0.19, pint = 6.1×10(-4) ). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR=0.93, p=2.8×10(-5) ), but no association was observed in current smokers (OR=1.07, p=0.14, pint = 3.4×10(-4) ). In conclusion, recently identified breast cancer susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 09/2014; DOI:10.1002/ijc.29188 · 5.01 Impact Factor
  • Source
    Human Molecular Genetics 08/2014; · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single nucleotide polymorphisms (SNPs) spanning a 1Mb region around CASP8 were genotyped in 46,450 breast cancer cases and 42,600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1,232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10,052 case and 12,575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% CI)] for the minor allele of 1.05 (1.03-1.07), p=1x10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (p=3 x10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), p=1x10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.
    Human Molecular Genetics 08/2014; DOI:10.1093/hmg/ddu431 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background ODM-201 is a novel androgen receptor (AR) inhibitor designed to block the growth of prostate cancer cells through high-affinity binding to the AR and inhibition of AR nuclear translocation. This trial assessed ODM-201's safety, pharmacokinetics, and activity in men with metastatic castration-resistant prostate cancer. Methods The ARADES trial is an open-label phase 1–2 trial undertaken in 23 hospitals across Europe and USA with ongoing long-term follow-up. Men with progressive metastatic castration-resistant prostate cancer, who had castrate concentrations of testosterone and an Eastern Cooperative Oncology Group score of 0–1 were enrolled. In the phase 1 part of the trial, patients were given oral ODM-201 at a starting daily dose of 200 mg, which was increased to 400 mg, 600 mg, 1000 mg, 1400 mg, and 1800 mg. In phase 2, patients were randomly assigned centrally and stratified by previous chemotherapy and treatment with CPY17 inhibitors, to receive one of three daily doses of ODM-201 (200 mg, 400 mg, and 1400 mg). The primary endpoint in phase 1 was safety and tolerability, whereas in phase 2 it was the proportion of patients with a PSA response (50% or greater decrease in serum PSA) at week 12. All analyses included patients who had received at least one dose of ODM-201. This trial is registered with ClinicalTrials.gov, number NCT01317641, and NCT01429064 for the follow-up after 12 weeks. Findings We enrolled patients between April 5, 2011, and March 12, 2013. In phase 1, 24 patients were enrolled to six sequential cohorts of three to six patients and received a daily dose of ODM-201, 200–1800 mg. No dose-limiting toxic effects were reported and the maximum tolerated dose was not reached. In phase 1, three patients reported eight adverse events of grade 3 (fracture, muscle injury, laceration, paralytic ileus, pain, presyncope, urinary retention, and vomiting) and one patient had a grade 4 adverse event (lymphoedema). None of the grade 3–4 adverse events were deemed to be related to ODM-201. Of the phase 1 patients, the four who received 200 mg, seven who received 400 mg, and three who received 1400 mg entered the phase 2 part of the trial. In addition to these patients, 110 were randomly assigned to three groups: 200 mg (n=38), 400 mg (n=37), and 1400 mg (n=35). For these patients, the most common treatment-emergent adverse events were fatigue or asthenia (15 [12%] of 124 patients), hot flush (six [5%]), and decreased appetite (five [4%]). One patient (<1%) had a grade 3 treatment-emergent adverse event (fatigue); no patients had a treatment-emergent grade 4 adverse event. 38 patients who received 200 mg, 39 who received 400 mg, and 33 who received 1400 mg were assessable for PSA response at 12 weeks. 11 (29%) patients in the 200 mg group, 13 (33%) in the 400 mg group, and 11 (33%) in the 1400 mg group had a PSA response at 12 weeks. Interpretation Our results suggest that ODM-201 monotherapy in men with progressive metastatic castration-resistant prostate cancer provides disease suppression and that ODM-201 has a favourable safety profile. These findings support further investigation of clinical responses with ODM-201 in men with castration-resistant prostate cancer. Funding Orion Corporation Orion Pharma, Endo Pharmaceuticals Inc.
    The Lancet Oncology 08/2014; 15(9). DOI:10.1016/S1470-2045(14)70240-2 · 24.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped for 82 single-nucleotide polymorphisms covering eight genes. Association of the genotypes was estimated against breast cancer risk, breast cancer-specific survival, and survival in different treatment groups, and clinicopathological variables. SNPs in TMPRSS3 (rs3814903 and rs11203200), TMPRSS7 (rs1844925), and HGF (rs5745752) associated significantly with breast cancer risk (Ptrend = 0.008-0.042). SNPs in TMPRSS1 (rs12151195 and rs12461158), TMPRSS2 (rs2276205), TMPRSS3 (rs3814903), and TMPRSS7 (rs2399403) associated with prognosis (P = 0.004-0.046). When estimating the combined effect of the variants, the risk of breast cancer was higher with 4-5 alleles present compared to 0-2 alleles (P = 0.0001; OR, 2.34; 95% CI, 1.39-3.94). Women with 6-8 survival-associating alleles had a 3.3 times higher risk of dying of breast cancer compared to women with 1-3 alleles (P = 0.001; HR, 3.30; 95% CI, 1.58-6.88). The results demonstrate the combined effect of variants in TTSPs and their related genes in breast cancer risk and patient outcome. Functional analysis of these variants will lead to further understanding of this gene family, which may improve individualized risk estimation and development of new strategies for treatment of breast cancer.
    PLoS ONE 07/2014; 9(7):e102519. DOI:10.1371/journal.pone.0102519 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46,450 cases and 42,600 controls) and analysed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 (rs1053338, per-allele OR=1.07, 95%CI=1.04-1.10, P=2.9x10(-6)), AKAP9-M463I at 7q21 (rs6964587, OR=1.05, 95%CI=1.03-1.07, P=1.7x10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR=1.10, 95%CI=1.07-1.12, P=5.1x10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine GWAS: for ATXN7-K264R, OR=1.07 (95%CI=1.05-1.10, P=1.0x10(-8)); for AKAP9-M463I, OR=1.05 (95%CI=1.04-1.07, P=2.0x10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known genome-wide association study (GWAS) hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.
    Human Molecular Genetics 06/2014; DOI:10.1093/hmg/ddu311 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2,156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n=39,067 cases; n=42,106 controls). SNPs in TACC2 (rs17550038: odds ratio (OR)=1.24, 95% CI 1.16-1.33, p=4.2x10(-10)) and EIF3H (rs799890: OR=1.07, 95% confidence interval (CI) 1.04-1.11, p=8.7x10(-6)) were significantly associated with risk of low grade breast cancer. The TACC2 signal was retained (rs17550038: OR=1.15, 95% CI 1.07-1.23, p=7.9x10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high grade breast cancer risk (p=2.1x10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
    Human Molecular Genetics 06/2014; DOI:10.1093/hmg/ddu300 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Single nucleotide polymorphisms (SNPs) in a DNA-repair gene, X-Ray repair cross complementing group 1 (XRCC1), have been associated with the survival of patients with breast cancer. We investigated the predictive value of XRCC1 SNP (rs25487) in patients with early breast cancer. Patients and Methods: The XRCC1 rs25487 genotypes of 411 Finnish patients with breast cancer were analyzed by a polymerase chain reaction-restriction fragment length polymorphism-based method. Survival was assessed by Kaplan-Meier method and Cox regression analysis according to the XRCC1 genotypes in specified adjuvant treatment groups. Results: The rs25487 variant AA genotype was associated with worse breast cancer-specific and overall survival in 238 patients receiving postoperative radiotherapy (p=0.031 and p=0.030, respectively). The AA genotype predicted worse breast cancer-specific survival among 75 patients treated with adjuvant chemotherapy (p=0.047). Conclusion: The XRCC1 rs25487 genotype may predict the outcome of postoperative radiotherapy and adjuvant chemotherapy in breast cancer.
    Anticancer research 06/2014; 34(6):3031-3037. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age <=50 years.
    Breast cancer research: BCR 05/2014; 16(3):R51. DOI:10.1186/bcr3662 · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enzyme manganese superoxide dismutase (MnSOD) defends against oxidative stress caused by reactive oxygen species (ROS), whereas Xeroderma pigmentosum group D (XPD) protein is involved in DNA repair. Polymorphisms in these genes have previously been associated with the outcome of breast cancer. Material and methods. Two gene polymorphisms, the MnSOD Val16Ala (rs4880A> G) and the XPD Lys751Gln (rs13181A> C), were analyzed in a cohort of 396 Finnish breast cancer patients by using PCR-RFLP-based methods in a prospective case-control study. The overall survival (OS), breast cancer-specific survival (BCSS), and relapse-free survival (RFS), assessed by using Kaplan-Meier survival analysis and multivariate Cox regression analysis, were evaluated according to the adjuvant treatments and the rs4880 and rs13181 genotypes. Results. In the combined analysis of rs4880 and rs13181 genotypes for patients treated with adjuvant tamoxifen (TAM) an increasing number of low-risk genotypes (rs4880 AA, rs4880 AG, or rs13181 AA) was significantly associated with better RFS, BCSS, and OS (n = 64). In addition, there was improved BCSS and RFS among TAM-treated patients carrying the wild-type rs4880 A allele as compared with the other genotypes (n = 64). The wild-type rs13181 AA genotype was similarly associated with better RFS and BCSS in the TAM-treated population (n = 65). Conclusion. This is the first study to show that the MnSOD rs4880 and XPD rs13181 polymorphisms may influence the outcome of breast cancer patients receiving adjuvant TAM monotherapy. Patients carrying the rs4880 A allele or rs13181 AA genotype may have a reduced ability to scavenge ROS and repair the DNA damage generated by TAM treatment.
    Acta oncologica (Stockholm, Sweden) 04/2014; 53(6). DOI:10.3109/0284186X.2014.892210 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0×10-10; P-het for ILC vs IDC ER+ tumors = 1.8×10-4). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.
    PLoS Genetics 04/2014; 10(4):e1004285. DOI:10.1371/journal.pgen.1004285 · 8.17 Impact Factor
  • Source
    Human Molecular Genetics 04/2014; Hum Mol Genet.(23(7)):1934-46.. · 6.68 Impact Factor

Publication Stats

8k Citations
1,487.49 Total Impact Points

Institutions

  • 2012–2015
    • University of Eastern Finland
      • • School of Medicine
      • • Institute of Clinical Medicine
      Kuopio, Northern Savo, Finland
  • 1990–2014
    • Kuopio University Hospital
      • • Cancer Center
      • • Department of Urology
      • • Department of Obstetrics and Gynaecology
      Kuopio, Northern Savo, Finland
  • 2013
    • Universität Heidelberg
      • Institute of Public Health
      Heidelburg, Baden-Württemberg, Germany
    • University of Queensland 
      • School of Chemistry and Molecular Biosciences
      Brisbane, Queensland, Australia
    • German Cancer Research Center
      • Division of Cancer Epidemiology
      Heidelberg, Baden-Wuerttemberg, Germany
    • Herlev Hospital
      Herlev, Capital Region, Denmark
  • 2010–2013
    • Centro Nacional de Investigaciones Oncológicas
      • Human Cancer Genetics Programme
      Madrid, Madrid, Spain
    • Institut de Cancérologie Gustave Roussy
      Île-de-France, France
  • 2009–2012
    • Memorial Sloan-Kettering Cancer Center
      New York City, New York, United States
  • 2008–2012
    • Vaasa Central Hospital
      Vaasa, Province of Western Finland, Finland
  • 2007–2012
    • University of Cambridge
      • • Department of Oncology
      • • Department of Public Health and Primary Care
      Cambridge, ENG, United Kingdom
    • The University of Sheffield
      Sheffield, England, United Kingdom
  • 2011
    • National Institutes of Health
      • Division of Cancer Epidemiology and Genetics
      Maryland, United States
  • 1990–2009
    • University of Kuopio
      • • Department of Social Pharmacy
      • • Institute of Clinical Medicine, Pathology and Forensic Medicine
      • • Department of Oncology
      • • Department of Pathology
      • • Department of Public Health and General Practice
      Kuopio, Northern Savo, Finland
  • 2001–2005
    • Finnish Institute of Occupational Health
      Helsinki, Southern Finland Province, Finland
    • University of Helsinki
      • Department of Oncology
      Helsinki, Province of Southern Finland, Finland
  • 2003–2004
    • Helsinki University Central Hospital
      • Department of Oncology
      Helsinki, Province of Southern Finland, Finland
  • 2000
    • Tampere University Hospital (TAUH)
      Tammerfors, Province of Western Finland, Finland
  • 1992
    • Università degli Studi di Siena
      • Department of Medicine, Surgery and Neuroscience
      Siena, Tuscany, Italy