Manabu Tanifuji

RIKEN, Wako, Saitama-ken, Japan

Are you Manabu Tanifuji?

Claim your profile

Publications (56)150.75 Total impact

  • Takayuki Sato, Manabu Tanifuji
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand neural mechanisms of object recognition, representation of visual object images has been studied in inferior temporal (IT) cortex, which is located at the final stage of the ventral object recognition pathway. Optical intrinsic signal imaging (OISI) is a powerful imaging technique to visualize spatial patterns of object representation in IT cortex. In this chapter, we will describe technical procedures of OISI particularly required when applying to IT cortex, and also recent advancement with OISI in understanding object representation and functional organization of IT cortex.
    01/2014: pages 161-175;
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are two dominant models for the functional organization of brain regions underlying object recognition. One model postulates category-specific modules while the other proposes a distributed representation of objects with generic visual features. Functional imaging techniques relying on metabolic signals, such as fMRI and optical intrinsic signal imaging (OISI), have been used to support both models, but due to the indirect nature of the measurements in these techniques, the existing data for one model cannot be used to support the other model. Here, we used large-scale multielectrode recordings over a large surface of anterior inferior temporal (IT) cortex, and densely mapped stimulus-evoked neuronal responses. We found that IT cortex is subdivided into distinct domains characterized by similar patterns of responses to the objects in our stimulus set. Each domain spanned several millimeters on the cortex. Some of these domains represented faces ("face" domains) or monkey bodies ("monkey-body" domains). We also identified domains with low responsiveness to faces ("anti-face" domains). Meanwhile, the recording sites within domains that displayed category selectivity showed heterogeneous tuning profiles to different exemplars within each category. This local heterogeneity was consistent with the stimulus-evoked feature columns revealed by OISI. Taken together, our study revealed that regions with common functional properties (domains) consist of a finer functional structure (columns) in anterior IT cortex. The "domains" and previously proposed "patches" are rather like "mosaics" where a whole mosaic is characterized by overall similarity in stimulus responses and pieces of the mosaic correspond to feature columns.
    Journal of Neuroscience 10/2013; 33(42):16642-56. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To investigate the properties and origin of retinal intrinsic signals by functional optical coherence tomography (fOCT) in macaque retinas. Methods: We modified a spectral domain OCT system to be able to give short-duration flashes or continuous light stimulation to the retina of three adult macaque monkeys (Macaca mulatta) under general anesthesia. Changes in the intensities of the OCT signals following the stimulus were determined. Results: Stimulus-evoked decreases or increases in the OCT signals were observed in the photoreceptor inner segment ellipsoids and outer segments, respectively. Experiments with focal and colored stimuli confirmed that these fOCT signals originated from the photoreceptors. No diffuse changes in the OCT signals were detected in the inner retinal layers, however there were slow changes in small discrete areas where the retinal vessels were located. The polarity of the fOCT signals in the inner retinal layer was dependent on each activated region, and one of the possible sources of the reflectance changes was the light scattering changes of the retinal vessels. Conclusions: The fOCT signals in the macaque retina consist of at least three components; 1) light scattering changes from the photoreceptor inner segment ellisoids, 2) light scattering changes from the outer segments, and 3) slow light scattering changes from the blood vessels in the inner retina. This technique has the potential of mapping local neuronal activity three dimensionally and may help in the diagnosis of retinal disorders of different retinal origins.
    Investigative ophthalmology & visual science 08/2013; · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic multielectrode recording has become a widely used technique in the past twenty years, and there are multiple standardized methods. As for recording with high-density array, the most common method in macaque monkeys is to use a subdural array with fixed electrodes. In this study, we utilized the electrode array with independently maneuverable electrodes arranged in high-density, which was originally designed for use on small animals, and redesigned it for use on macaque monkeys while maintaining the virtues of maneuverability and high-density. We successfully recorded single and multiunit activities from up to 49 channels in the V1 and inferior temporal (IT) cortex of macaque monkeys. The main change in the surgical procedure was to remove a 5mm diameter area of dura mater. The main changes in the design were (1) to have a constricted layer of heavy silicone oil at the interface with the animal to isolate the electrical circuit from the cerebrospinal fluid, and (2) to have a fluid draining system that can shunt any potential postsurgical subcranial exudate to the extracranial space.
    Journal of neuroscience methods 08/2012; 211(1):114-24. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Odor signals are conveyed from the olfactory bulb to the olfactory cortex (OC) by mitral cells (MCs) and tufted cells (TCs). However, whether and how the two types of projection neuron differ in function and axonal connectivity is still poorly understood. Odor responses and axonal projection patterns were compared between MCs and TCs in mice by visualizing axons of electrophysiologically identified single neurons. TCs demonstrated shorter onset latency for reliable responses than MCs. The shorter latency response of TCs was maintained in a wide range of odor concentrations, whereas MCs responded only to strong signals. Furthermore, individual TCs projected densely to focal targets only in anterior areas of the OC, whereas individual MCs dispersedly projected to all OC areas. Surprisingly, in anterior OC areas, the two cell types projected to segregated subareas. These results suggest that MCs and TCs transmit temporally distinct odor information to different OC targets.
    Journal of Neuroscience 06/2012; 32(23):7970-85. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to determine the topography of bleaching in rods, middle/long-wavelength (M/L) and short-wavelength (S) cones in the macaque retina by using a modified retinal densitometry technique. A modified commercial digital fundus camera system was used to measure continuously the intensity of the light reflectance during bleaching with band pass lights in the ocular fundus of three adult Rhesus monkeys (Macaca mulatta) under general anesthesia. The topography of bleaching in rods, M/L-, and S-cones was obtained separately by considering the characteristic time course of the reflectance changes, depending on the wavelengths of light and retinal locations. The distribution of M/L-cones response had a steep peak at the foveal center and was elongated horizontally. The distribution of rod responses was minimum at the foveal center and maximum along a circular region at the eccentricity of the optic disc. The distribution of S-cone responses was highest at the fovea and was excavated centrally. There was a circular region with the maximal responses at 0.38 to 1.0 degrees from the foveal center. With the current imaging technique, not only the steep peak of the M/L-cone responses at the fovea, but the ring-shaped distribution of rod responses in the periphery and the central reduction of S-cone response could be determined with good resolution.
    Investigative ophthalmology & visual science 03/2012; 53(6):2796-803. · 3.43 Impact Factor
  • Ryusuke Hayashi, Manabu Tanifuji
    [Show abstract] [Hide abstract]
    ABSTRACT: Binocular rivalry is a useful psychophysical tool to investigate neural correlates of visual consciousness because the alternation between awareness of the left and right eye images occurs without any accompanying change in visual input. The conventional experiments on binocular rivalry require participants to voluntarily report their perceptual state. Obtaining reliable reports from non-human primates about their subjective visual experience, however, requires long-term training, which has made electrophysiological experiments on binocular rivalry quite difficult. Here, we developed a new binocular rivalry stimulus that consists of two different object images that are phase-shifted to move in opposite directions from each other: One eye receives leftward motion while the other eye receives rightward motion, although both eyes' images are perceived to remain at the same position. Experiments on adult human participants showed that eye movements (optokinetic nystagmus, OKN) are involuntarily evoked during the observation of our stimulus. We also found that the evoked OKN can serve as a cue for accurate estimation about which object image was dominant during rivalry, since OKN follows the motion associated with the image in awareness at a given time. This novel visual presentation technique enables us to effectively explore the neural correlates of visual awareness using animal models.
    Journal of Vision 01/2012; 12(3). · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In studies of in vivo extracellular recording, we usually penetrate electrodes almost blindly into the neural tissue, in order to detect the neural activity from an expected target location at a certain depth. After the recording, it is necessary for us to determine the position of the electrodes precisely. Generally, to identify the position of the electrode, one method is to examine the postmortem tissue sample at micron resolution. The other method is using MRI and it does not have enough resolution to resolve the neural structures. To solve such problems, we propose swept source optical coherence tomography (SS-OCT) as a tool to visualize the cross-sectional image of the neural target structure along with the penetrating electrode. We focused on a rodent olfactory bulb (OB) as the target. We succeeded in imaging both the OB layer structure and the penetrating electrode, simultaneously. The method has the advantage of detecting the electrode shape and the position in real time, in vivo. These results indicate the possibility of using SS-OCT as a powerful tool for guiding the electrode into the target tissue precisely in real time and localizing the electrode tip during electrophysiological recordings.
    Biomedical Optics Express 11/2011; 2(11):3129-34. · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB's layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields.
    Biomedical Optics Express 08/2011; 2(8):2279-87. · 3.18 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • Takayuki Sato, Manabu Tanifuji
    Neuroscience Research - NEUROSCI RES; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various methods have been used to obtain a topographic map of bleached photopigments in human retinas in the past. The purpose of this study was to determine whether the bleaching topography of the photoreceptors could be obtained by snapshot imaging reflectometry. Four to five fundus photographs of one rhesus monkey and three healthy human subjects were taken by white flashes at intervals of 4 s, with a commercial fundus camera with minimal modifications. The flash-induced reflectance increases (bleaching) were calculated by dividing the reflectance of the first image into the subsequent images, pixel by pixel. The topography of the bleached macula corresponded well with the anatomical distribution of the cones. The ratio of reflectance changes in the center to that in the surrounding tissue was high for red and low for green and blue images. These results indicate that the reflectivity changes were not artifacts but were derived from changes in the photopigment density in the cones and rods. The topography of bleached photoreceptors obtained with a commercial fundus camera from one monkey and three healthy human subjects showed that this technique has potential as a new clinical method for examining photoreceptor function in both normal and diseased retinas.
    Japanese Journal of Ophthalmology 07/2010; 54(4):349-56. · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visual object recognition is a simple and easy task in our daily life. However, the mechanisms for recognizing objects are not at all simple nor easy. To understand neural mechanisms of object recognition, we have investigated representation of object images in macaque inferior temporal cortex that is the area essential for object recognition. Optical intrinsic signal imaging has revealed that object images are represented by the combinatorial code at the columnar level, where each column represents a visual feature of object images. The visual features represented by columns include local features as well as global features representing spatial arrangements of local features. Here, columns are supposed to be functional units for object representation. However, difference in object selectivity among nearby cells does not support the concept of columns as the functional units. Quantitative analysis of object responses of single cells and population activity revealed that each cell in a columnar region is characterized by cell specific property and property common across the cells in the columnar region, suggesting two different levels (single cell and columnar level) of object representation. Possible role of these two levels of object representation will be discussed.
    11/2009: pages 93-117;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a functional imaging technique based on optical coherence tomography (OCT). This technique resolves 0.01–0.1 mm functional structures along the depth axis. The basis of the technique is that neural activation changes light scattering of the light penetrating the neural tissue due to activity dependent structural changes.
    11/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.
    Japanese Journal of Ophthalmology 07/2009; 53(4):297-314. · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the fine anatomical organization of cortical inputs to visual association area TE, 2-3 small injections of retrograde tracers were made in macaque monkeys. Injections were made as a terminal procedure, after optical imaging and electrophysiological recording, and targeted to patches physiologically identified as object-selective. Retrogradely labeled neurons occurred in several unimodal visual areas, the superior temporal sulcus, intraparietal sulcus (IPS), and prefrontal cortex (PFC), consistent with previous studies. Despite the small injection size (<0.5 mm wide), the projection foci in visual areas, but not in IPS or PFC, were spatially widespread (4-6 mm in extent), and predominantly consisted of neurons labeled by only one of the injections. This can be seen as a quasi-modular organization. In addition, within each projection focus, there were scattered neurons projecting to one of the other injections, together with some double-labeled (DL) neurons, in a more distributed pattern. Finally, projection foci included smaller "hotspots," consisting of intermixed neurons, single-labeled by the different injections, and DL neurons. DL neurons are likely the result of axons having extended, spatially separated terminal arbors, as demonstrated by anterograde experiments. These results suggest a complex, hybrid connectivity architecture, with both modular and distributed components.
    Cerebral Cortex 06/2009; 20(2):257-70. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visualization of changes in reflected light from in vivo brain tissues reveals spatial patterns of neural activity. An important factor which influences the degree of light reflected includes the change in light scattering elicited by neural activation. Microstructures of neural tissues generally cause light scattering, and neural activities are associated with some changes in the microstructures. Here, we show that the optical properties unique to light scattering enable us to visualize spatial patterns of retinal activity non-invasively (FRG: functional retinography), and resolve functional structures in depth (fOCT: functional optical coherence tomography).
    Methods in molecular biology (Clifton, N.J.) 02/2009; 489:111-32. · 1.29 Impact Factor
  • Neuroscience Research - NEUROSCI RES; 01/2009