Adriana Zerlotti Mercadante

São Paulo State University, São José do Rio Preto, Estado de Sao Paulo, Brazil

Are you Adriana Zerlotti Mercadante?

Claim your profile

Publications (107)163.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC–DAD–MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p < 0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p > 0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p > 0.05).
    Food Chemistry. 01/2015; 170:102–109.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hydrophilic extract of murici (Byrsonima crassifolia), a fruit native to the North and Northeast regions of Brazil, was evaluated in relation to its phenolic composition and in vitro antioxidant potential against some physiologically relevant reactive oxygen and nitrogen species. Additionally, the protective effect of murici extract against peroxyl radical (ROOradical dot)-induced toxicity to human erythrocytes was also determined. The major phenolic compound, determined by HPLC–DAD–MSn, was quercetin (2.72 ± 0.35 μg/mL). The extract was able to scavenge ROOradical dot (0.30 ± 0.04 μmol trolox equivalent/mg), hypochlorous acid (IC50 = 10.0 ± 0.1 μg/mL), hydroxyl radical (IC50 = 7 ± 1 μg/mL) and peroxynitrite anion (IC50 = 21.0 ± 0.6 μg/mL and 17.0 ± 1.6 μg/mL, respectively, in absence and presence of NaHCO3). Human erythrocytes were subjected to oxidative damage, but murici extract was not able to inhibit hemolysis, even at the highest tested concentration. On the other hand, the extract inhibited hemoglobin oxidation (IC50 = 271 ± 44 μg/mL), lipid peroxidation (1000 μg/mL) by 48 ± 5%, depletion of glutathione (100 μg/mL) by 49 ± 2% and formation of its oxidized form (100 μg/mL) by 96 ± 4%.
    Food Research International 10/2014; 64:618-625. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Carotene, zeaxanthin, lutein, β-cryptoxanthin, and lycopene are liposoluble pigments widely distributed in vegetables and fruits and, after ingestion, these compounds are usually detected in human blood plasma. In this study, we evaluated their potential to inhibit hemolysis of human erythrocytes, as mediated by the toxicity of peroxyl radicals (ROO•). Thus, 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as ROO• generator and the hemolysis assay was carried out in experimental conditions optimized by response surface methodology, and successfully adapted to microplate assay. The optimized conditions were verified at 30 × 106 cells/mL, 17 mM of AAPH for 3 h, at which 48 ± 5% of hemolysis was achieved in freshly isolated erythrocytes. Among the tested carotenoids, lycopene (IC50 = 0.24 ± 0.05 μM) was the most efficient to prevent the hemolysis, followed by β-carotene (0.32 ± 0.02 μM), lutein (0.38 ± 0.02 μM), and zeaxanthin (0.43 ± 0.02 μM). These carotenoids were at least 5 times more effective than quercetin, trolox, and ascorbic acid (positive controls). β-Cryptoxanthin did not present any erythroprotective effect, but rather induced a hemolytic effect at the highest tested concentration (3 μM). These results suggest that selected carotenoids may have potential to act as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.Practical ApplicationSelected carotenoids may have potential to be used in the development of phytopharmaceutical products as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.
    Journal of Food Science 08/2014; · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
    Food and Chemical Toxicology. 05/2014; 70.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fruits from the Atlantic Forest have received increasing interest because they contain high levels of bioactive compounds with notable functional properties. The composition of carotenoids and phenolic compounds from fruits found in the Atlantic Forest (jussara, uvaia, araça and grumixama) was determined by high-performance liquid chromatography coupled to diode array and mass spectrometry detectors. Uvaia showed the highest levels of carotenoids (1306.6 μg/100 g fresh matter (f.m.)). Gallic acid was major phenolic compound in araça (12.2 mg GAE/100 g f.m.) and uvaia (27.5 mg GAE/100 g f.m.). In grumixama, eight quercetin derivatives were found; the main carotenoids included all-trans-β-cryptoxanthin (286.7 μg/100 g f.m.) and all-trans-lutein (55.5 μg/100 g f.m.). Uvaia and grumixama contain high amounts of carotenoids, while jussara showed greater levels of phenolic compounds (415 mg GAE/100 g f.m.), particularly anthocyanins (cyanidin 3-rutinoside: 179.60 mg/100 g f.m. and cyanidin 3-glucoside: 47.93 mg/100 g f.m.).
    Journal of Agricultural and Food Chemistry 04/2014; · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study HPLC-DAD-MS/MS was applied for the identification of compounds derived from (all-E)-β-carotene following epoxidation and oxidative cleavage. The consequences on the CIELAB colour parameters and antioxidant capacity (AC) were also evaluated. Five apocarotenoids, three secocarotenoids, seven Z isomers and two epoxides were detected as a result of the oxidative cleavage. Four epoxides and three Z isomers were detected as a consequence of the epoxidation reaction. Some compounds were detected for the first time as a result of oxidation reactions. Both treatments led to a marked decrease in b(∗) and Cab(∗) values, indicating that these colour parameters can be used for the rapid assessment of β-carotene oxidation. The oxidative cleavage of β-carotene resulted in increased capacity to both scavenge ABTS(+) and quench singlet oxygen. These results suggest that the study of the AC of these oxidative derivatives and their possible usefulness as food ingredients deserves further attention.
    Food Chemistry 03/2014; 147C:160-169. · 3.33 Impact Factor
  • Renan Campos Chisté, Marisa Freitas, Adriana Zerlotti Mercadante, Eduarda Fernandes
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the presence of endogenous antioxidants in erythrocytes, these cells are highly susceptible to oxidative damage and some exogenous antioxidants, such as carotenoids, are able to inhibit the pro-oxidant effect provided by reactive oxygen species. In this study, we evaluated the potential of carotenoids usually detected in human blood plasma (β-carotene, zeaxanthin, lutein, β-cryptoxanthin and lycopene) to prevent the oxidative damage in erythrocytes. Human erythrocytes were subjected to induced oxidative damage and the following biomarkers of oxidative stress were monitored: lipid peroxidation [induced by tert-butyl hydroperoxide (tBHP) or by 2,2´-azobis (2-methylpropionamidine) dihydrochloride (AAPH)] and AAPH-induced oxidation of hemoglobin and depletion of glutathione. When tBHP was used to induce lipid peroxidation, lycopene was the most efficient carotenoid (IC50=2.2±0.4μM), whilst lutein was the most efficient (IC50=2.5±0.7μM) when peroxyl radicals (ROO(●)) were generated by AAPH. In relation to the hemoglobin oxidation induced by AAPH, β-carotene and zeaxanthin were the most efficient antioxidants (IC50=2.9±0.3μM and 2.9±0.1μM, respectively). Surprisingly β-cryptoxanthin and lycopene did not inhibit hemoglobin oxidation or lipid peroxidation when induced by AAPH, even at the highest tested concentration (3μM). Additionally, the tested carotenoids did not prevent ROO(●)- mediated GSH depletion and GSSG formation probably due to the lack of interaction between carotenoids (apolar) and glutathione (polar). Our study contributes with important insights that carotenoids may exert therapeutical potential to act as natural antioxidant to prevent ROO(●)-induced toxicity in human erythrocytes.
    Life sciences 01/2014; · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thermal degradation of carotenoids in cashew apple (Anacardium occidentale L.) juice leads to changes in the beverage colour, and possibly in the aroma and flavour, although the latter hypothesis has not yet been properly investigated. Thus the objective of this study was to investigate the formation of odour active volatiles derived from the thermal degradation of carotenoids in a cashew apple juice model. A carotenoid extract in an acidic aqueous medium was submitted to 60 and 90 °C for 1 and 2 h. The non-volatile compounds were identified by high performance liquid chromatography coupled with a photodiode array and mass spectrometry detectors (HPLC-PDA). The volatiles were isolated by headspace-solid phase micro-extraction, separated by gas chromatography, identified by mass spectrometry (SPME-GC–MS) and their odour significance assessed by GC-Olfactometry. Thirty-three odour active volatiles were identified in the heated system, amongst which 1,2,3,5-tetramethylbenzene, naphthalene and p-xylene. The results indicated that the volatiles formed from the thermal degradation of the carotenoids influence the aroma and flavour of thermally processed cashew apple products.
    Food Research International. 01/2014; 56:108–114.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solanum sessiliflorum Dunal is a native shrub often found in the Amazon Forest. Its fruits, known as maná-cubiu, possess an unusual flavor and are consumed in salads and juices, mainly by the local community of Northern Brazil. Because these fruits are used in traditional medicine as hypoglycemic and hypocholesterolemic agents, it is important to establish whether the consumption of maná-cubiu is safe using in vivo genotoxicity tests. Here, we investigated the genotoxic and antigenotoxic potential of maná-cubiu for doxorucibin(DXR)-induced DNA damage using the micronucleus test and the comet assay in Wistar rats. Moreover, oxidative stress parameters were determined in the heart and liver of the animals by measuring the thiobarbituric acid reactive species (TBARS), a biomarker of lipid peroxidation, and reduced glutathione (GSH) content. The relative expression of Pgts2 mRNA in the livers of the animals was also determined. The tests were performed with maná-cubiu pulp (125, 250, 375 or 500 mg/kg body weight - b.w.) by gavage for 14 days, followed by intraperitoneal injection of saline or DXR (16 mg/kg b.w.) immediately after the last gavage, which occurred 24 hours before euthanasia. The results showed that maná-cubiu at all tested doses had no cytotoxic effects on bone marrow cells and was not genotoxic to heart or liver cells. In addition, maná-cubiu treatments decreased DXR-induced DNA damage according to the comet assay in heart and liver cells. Reductions in micronuclei frequency in peripheral blood cells occurred at 125, 250 and 375 mg/kg b.w doses of maná-cubiu, and the TBARS content induced by DXR was also reduced by maná-cubiu. Furthermore, maná-cubiu did not modulate the transcription of the Ptgs2 gene. In conclusion, maná-cubiu pulp fruit was not cytotoxic or genotoxic in Wistar rats, suggesting its safety for human consumption, at least considering genotoxic effects. The antioxidant capacity of maná-cubiu pulp fruit may contribute to the antigenotoxic effects of this fruit at the doses used in this study.
    Food Research International. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlorophyll a and carotenoids are important pigments in photosynthesis. Several studies have been published describing extraction and analysis protocols of these pigments, mainly in vascular plant species. This study standardizes an extraction and analysis protocol of these substances in Gracilaria tenuistipitata var. liui, a red seaweed. Apical portions grown in vitro were triturated in liquid nitrogen. Extracts were prepared in 1.5 mL solvent and centrifuged. Quantitative and qualitative analyses of pigments were performed by UV/visible light spectrophotometry and high performance liquid chromatography (HPLC) and HPLC coupled to mass spectrometry (HPLC-MS). The parameters assessed were: minimum biomass, best extraction solvent, and number of extraction steps. Methanol was the most efficient solvent, and 50 mg fresh biomass was the amount of sample indicated, submitted to one single extraction step. No significant differences were observed in levels of these pigments by UV-visible light spectrophotometry and HPLC. However, HPLC or HPLC-MS are required to identify the different carotenoids present in this seaweed species.
    Brazilian Journal of Oceanography 01/2014; 62(1). · 0.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the effect of adding lutein dye on the oxidative stability of yogurt during 35 d of refrigerated storage, in the presence and absence of light. Yogurts manufactured without and with the equivalent of 1.5 mg of lutein in 120 g of the final product were characterized for their total carotenoid and riboflavin contents, and the behaviors of both riboflavin and lutein were monitored during storage. A decrease in riboflavin content occurred, with concurrent appearance of its derived-oxidation products in the yogurts without added lutein and exposed to light during storage. On the other hand, the yogurts with added lutein dye showed constant lutein and riboflavin contents throughout storage both for the samples stored under light and for those stored in the dark. Yogurts (120 g) with the addition of 0.5, 1.5, and 2.5 mg of lutein dye were evaluated for their sensory acceptance, and the statistical analysis showed no differences between the samples for the attributes of aroma and flavor. These results show that the added lutein remained stable throughout the storage period and conferred protection for the riboflavin against photooxidation, preserving the quality of the yogurts.
    Journal of Dairy Science 12/2013; · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as sugarcane bagasse, which is the major by-product of the sugarcane industry. Due to its abundant availability and despite the complex chemical composition, it can be considered an ideal substrate for microbial processes for the production of value-added products. In the present study we evaluated the enzymatic production of xylooligosaccharides (XOS) and antioxidant compounds from sugarcane bagasse using XynZ from Clostridium thermocellum, a naturally chimeric enzyme comprising activities of xylanase and feruloyl esterase along with a carbohydrate binding module (CBM6). In order to reveal the biotechnological potential of XynZ, the XOS released after enzymatic hydrolysis using different substrates were characterized by capillary electrophoresis and quantified by high performance anion exchange chromatography. In parallel, the antioxidant capacity related to the release of phenolic compounds was also determined. The results indicated noteworthy differences regarding the amount of XOS and antioxidant phenolic compounds produced, as well as the XOS profile, functions of the pre-treatment method employed. The ability of XynZ to simultaneously produce xylooligosaccharides, natural probiotics, phenolic compounds and antioxidant molecules from natural substrates such as sugarcane bagasse demonstrated the biotechnological potential of this enzyme. Production of value-added products from agro-industrial residues is of great interest not only for advancement in the biofuel field, but also for pharmaceutical and food industries.
    Industrial Crops and Products 12/2013; 52:770. · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production.
    Applied Microbiology and Biotechnology 11/2013; 97:6759. · 3.69 Impact Factor
  • Renan Campos Chisté, Marta de Toledo Benassi, Adriana Zerlotti Mercadante
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionCaryocar villosum has been reported as a source of bioactive compounds that can be used as a potential product against oxidative damage in foods or biological systems. Objective To obtain extracts from fruit pulps of C. villosum with high levels of bioactive compounds that have both antioxidant and colour properties. Method The contents of bioactive compounds (total phenolic compounds, flavonoids, tannins, carotenoids and tocopherols), the colour parameters, the scavenging capacity against peroxyl radicals (ROO•) and the quenching activity against singlet oxygen (1O2) were determined. All data were used for extract classification by applying principal components analysis and hierarchical cluster analysis. ResultsThe water and ethanol:water (1:1, v/v) extracts presented the highest levels of total phenolic compounds (9.2 and 6.3 mg gallic acid equivalent/g extract, respectively), total flavonoids (3.8 and 2.5 mg catechin equivalent/g extract, respectively) and total tannins (7.6 and 2.4 mg tannic acid equivalent/g extract, respectively). The ethanol:water (1:1, v/v) extract also showed the highest scavenging capacity against ROO• (0.3 mmol trolox equivalent/g extract) and the highest protection against 1O2 (12.5%). On the other hand, the ethanol extracts, which were the most vivid and yellow colour (C*ab = 13.7 and b* = 13.3), presented the highest level of total carotenoids (0.1 mg/g), but low scavenging capacity against ROO• (0.01 mmol trolox equivalent/g extract). Conclusion Based on these results and depending on the applicability, the ethanol:water, water and ethanol are the most promising solvents to obtain C. villosum extracts with high contents of bioactive compounds, ROO• scavenging capacity and protection against 1O2. Copyright © 2013 John Wiley & Sons, Ltd.
    Phytochemical Analysis 11/2013; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work investigated the effects of irradiation (0, 1 and 2 kGy) on the content of bioactive compounds such as vitamin C and carotenoids with provitamin A activity in arugula during the storage at 5±1 °C for up to 13 and 16 days, respectively. The vitamin C content decreased in non-irradiated as well as irradiated (1 and 2 kGy) samples during the storage period. On the other hand, no significant change in the content of carotenoids with provitamin A activity was observed after irradiation or storage period. Thus, the irradiation had minimal detrimental effects on the contents of carotenoids in arugula.
    Radiation Physics and Chemistry 09/2013; · 1.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have proposed the use of low concentrations of phytochemicals and combinations of phytochemicals in chemoprevention to reduce cytotoxicity and simulate normal ingestion through diet. The purpose of the present study was to evaluate whether the DNA damage, chromosome instability, and oxidative stress induced by cisplatin (cDDP) are modulated by a combination of the natural pigments lutein (LT) and chlorophyll b (CLb). The protective effects observed for synergism between phytochemicals have not been completely investigated. The comet assay and micronucleus test were performed and the catalase activities and glutathione (GSH) concentrations were measured in the peripheral blood, bone marrow, liver, and kidney cells of mice. The comet assay and micronucleus test results revealed that the pigments LT and CLb were not genotoxic or mutagenic and that the pigments presented antigenotoxic and antimutagenic effects in the different cell types evaluated. This protective effect is likely related to antioxidant properties in peripheral blood cells through the prevention of cDDP-induced GSH depletion. Altogether our results show that the combination of LT and CLb, which are both usually present in the same foods, such as leafy green vegetables, can be used safely.
    Human & Experimental Toxicology 08/2013; 32(8):828-836. · 1.31 Impact Factor
  • Lilian Regina Barros Mariutti, Eliseu Rodrigues, Adriana Zerlotti Mercadante
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of carotenoids from murici fruit (Byrsonima crassifolia), a fruit native to North and Northeast regions of Brazil, was determined by high-performance liquid chromatography coupled to diode array and mass spectrometry detectors (HPLC-DAD-MS/MS). Sixteen compounds were found in murici and 13 carotenoids were identified or tentatively identified. The major carotenoids were (all-E)-lutein (17.3 ± 1.2 μg/g of dry weight) and (all-E)-zeaxanthin (3.5 ± 0.2 μg/g of dry weight). Xanthophylls were the predominant carotenoids in murici, representing 94% (w/w) of the total carotenoids. The carotenoid extract was shown to be a potent scavenger of peroxyl radical, being almost 13 times more potent than α-tocopherol. To the best of our knowledge, it is the first time that the detailed description of the carotenoid composition of murici is reported.
    Journal of Food Composition and Analysis 08/2013; 31(1):155-160. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In this study, the ethanolic extract obtained from piquiá pulp was assessed for genotoxicity and oxidative stress by employing the micronucleus test in bone marrow and peripheral blood cells in addition to comet, thiobarbituric-acid-reactive substances (TBARS), and reduced glutathione assays in the liver, kidney, and heart. Additionally, phytochemical analyses were performed to identify and quantify the chemical constituents of the piquiá extract. Wistar rats were treated by gavage with an ethanolic extract from piquiá pulp (75 mg/kg body weight) for 14 days, and 24 h prior to euthanasia, they received an injection of saline or doxorubicin (15 mg/kg body weight, intraperoneally). The results demonstrated that piquiá extract at the tested dose was genotoxic but not mutagenic, and it increased the TBARS levels in the heart. Further studies are required to fully elucidate how the properties of ethanolic extract of piquiá pulp can affect human health.
    Journal of medicinal food 02/2013; · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.
    Phytotherapy Research 02/2013; · 2.07 Impact Factor
  • Eliseu Rodrigues, Lilian Regina Barros Mariutti, Adriana Zerlotti Mercadante
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of carotenoids and phenolic compounds from mana-cubiu (Solanum sessiliflorum), a fruit native from Amazonia, was determined by high-performance liquid chromatography coupled to diode array and mass spectrometry detectors (HPLC-DAD-MSn). The antioxidant capacities of the hydrophilic and carotenoid extracts against some reactive oxygen (ROO•, H2O2, HOCl, HO•) and nitrogen (ONOO-) species were also determined. Seventeen carotenoids and three phenolic compounds were found in mana-cubiu. The major carotenoids were (all-E)-β-carotene (7.15 μg/g dry weight) and (all-E)-lutein (2.41 μg/g dry weight). The 5-caffeoylquinic acid (1351 μg/g dry weight) was the major phenolic compound, representing more than 78% (w/w) of the total phenolic compounds. Moreover, two dihydrocaffeoyl spermidines were found in the hydrophilic extract. Both mana-cubiu extracts were able to scavenge all the tested reactive species. The carotenoid extract showed to be a potent scavenger of peroxyl radical, whilst the hydrophilic extract was a potent hydrogen peroxide and hypochlorous scavenger.
    Journal of Agricultural and Food Chemistry 02/2013; · 2.91 Impact Factor

Publication Stats

854 Citations
163.79 Total Impact Points

Institutions

  • 2013
    • São Paulo State University
      • Departamento de Alimentos e Nutrição
      São José do Rio Preto, Estado de Sao Paulo, Brazil
  • 2010–2013
    • University of São Paulo
      • Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP)
      Ribeirão Preto, Estado de Sao Paulo, Brazil
  • 1998–2013
    • University of Campinas
      • • Departamento de Ciência de Alimentos (DCA)
      • • Institute of Chemistry
      Conceição de Campinas, São Paulo, Brazil
  • 2012
    • CEP America
      Emeryville, California, United States
  • 1996–2010
    • Universität Bern
      • Department of Chemistry and Biochemistry
      Berna, Bern, Switzerland
  • 2004–2009
    • Universidad Nacional de Santiago del Estero
      Santiago del Estero, Santiago del Estero, Argentina
  • 2008
    • Technische Universität Braunschweig
      • Institute of Food Chemistry
      Braunschweig, Lower Saxony, Germany