Chao-Ling Yao

Yuan Ze University, Taoyuan City, Taiwan, Taiwan

Are you Chao-Ling Yao?

Claim your profile

Publications (23)57.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AIMS: The number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need. METHODS: This study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133(+) HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays. RESULTS: The expanded fold values of CD45(+) white blood cells and CD34(+), CD133(+), CD34(+)CD38(-), CD133(+)CD38(-), CD34(+)CD133(+), colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133(+) MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133(+) MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38(-) cells, which were either CD34(+) or CD133(+), sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice. CONCLUSIONS: Our results demonstrated that an initial, limited number of MPB CD133(+) HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.
    Cytotherapy 06/2013; · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein arginine methylation is emerging as a pivotal posttranslational modification involved in regulating various cellular processes; however, its role in erythropoiesis is still elusive. Erythropoiesis generates circulating red blood cells which are vital for body activity. Deficiency in erythroid differentiation causes anemia which compromises the quality of life. Despite extensive studies, the molecular events regulating erythropoiesis are not fully understood. This study showed that the increase in protein arginine methyltransferase 1 (PRMT1) levels, via transfection or protein transduction, significantly promoted erythroid differentiation in the bipotent human K562 cell line as well as in human primary hematopoietic progenitor CD34+ cells. PRMT1 expression enhanced the production of hemoglobin and the erythroid surface marker glycophorin A, and also up-regulated several key transcription factors, GATA1, NF-E2 and EKLF, which are critical for lineage-specific differentiation. The shRNA-mediated knockdown of PRMT1 suppressed erythroid differentiation. The methyltransferase activity-deficient PRMT1G80R mutant failed to stimulate differentiation, indicating the requirement of arginine methylation of target proteins. Our results further showed that a specific isoform of p38 MAPK, p38α, promoted erythroid differentiation, whereas p38β did not play a role. The stimulation of erythroid differentiation by PRMT1 was diminished in p38α- but not p38β-knockdown cells. PRMT1 appeared to act upstream of p38α, since expression of p38α still promoted erythroid differentiation in PRMT1-knockdown cells, and expression of PRMT1 enhanced the activation of p38 MAPK. Importantly, we showed for the first time that PRMT1 was associated with p38α in cells by co-immunoprecipitation and that PRMT1 directly methylated p38α in in vitro methylation assays. Taken together, our findings unveil a link between PRMT1 and p38α in regulating the erythroid differentiation program and provide evidence suggesting a novel regulatory mechanism for p38α through arginine methylation.
    PLoS ONE 01/2013; 8(3):e56715. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluates the crosslinkage effect of chondroitin sulphate C (CSC) and type II collagen (COL II) on chondrogenesis of mesenchymal stem cells (MSCs) in vitro and in vivo. In the in vitro studies, our results show that the weight ratio CSC:COL II that reaches 1.2:100 (CSC(1.2/100) -COL II scaffold) can provide an optimal microenvironment for MSC chondrogenesis. When MSCs are cultured in this CSC(1.2/100) -COL II scaffold, the chondrogenic gene expression of cultured cells is upregulated, while the osteogenic gene expression of these is downregulated. In addition, MSCs cultivated in the CSC(1.2/100) -COL II scaffold are found to express the highest glycosaminoglycans:DNA ratio as compared to those in scaffolds of other CSC:COL II ratios. Histological and immunohistological evidence also supports the result. In the in vivo study, our results show that MSCs cultivated in the CSC(1.2/100) -COL II scaffold demonstrate a better repair ability on cartilage lesions than does the COL II scaffold. After 1 month in vivo, the injected MSCs in the CSC(1.2/100) -COL II scaffold show lacuna structures and stimulate the formation of type II collagen at the defective sites. Six months after transplantation, the generated cells in the CSC(1.2/100) -COL II group show higher gene expressions of type II collagen and aggrecan but lower gene expression of type I collagen at the defective sites than those in the COL II group. The results strongly suggest that CSC(1.2/100) -COL II scaffold can serve as a potential candidate for cartilage repair and improve the chondrogenesis of MSCs in general. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 03/2012; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) are multi-potent with numerous mesenchymal-lineage differentiation potential and immunomodulatory capabilities. However, the immunoregulatory properties of MSCs are not clearly defined. The objective of the present study was to elucidate the role(s) of MSCs in IL-17 production and the subsequent effect(s) on neutrophil activation. We have demonstrated that human bone marrow-derived MSCs (BM-MSCs) instruct anti-CD3/anti-CD28 antibody-activated CD4(+) CD45RO(+) memory T cells, but not other CD4(+) subsets or CD8(+) T cells, to produce IL-17 after cell-cell contact. After the addition of IL-17, neutrophil phagocytic activity was increased. This is the first report on the ability of BM-MSCs to induce IL-17 production in memory CD4(+) T cells that, in turn, promotes enhanced phagocytic activity of neutrophils. These results suggest that MSCs regulate the functional activation of neutrophils via their role in modulating IL-17 from CD4(+) CD45RO(+) memory T cells.
    Immunobiology 02/2012; · 2.81 Impact Factor
  • Chao-Ling Yao, Shiaw-Min Hwang
    [Show abstract] [Hide abstract]
    ABSTRACT: Human mesenchymal stromal cells (hMSCs) play a crucial role in tissue engineering and regenerative medicine and thus have important clinical potential for cell-based therapy. However, the limited cell number and the difficulty in detecting these cells in vivo have restricted many hMSC studies. Therefore, the development of hMSCs immortalized with telomerase and expressing red fluorescence protein will facilitate their expansion and detection in vivo, and these cells will be important for both to stem cell research and clinical use. In this chapter, we describe the protocols used to establish telomerase- and red fluorescence protein-expressing immortalized hMSCs using a nonviral transfection method. These cells will be useful tools for stem cell research and translational studies.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 879:471-8. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA), an extracellular lipid mediator, exerts multiple bioactivities through activating G protein-coupled receptors. LPA receptor 3 (LPA(3)) is a member of the endothelial differentiation gene family, which regulates differentiation and development of the circulation system. However, the relationship among the LPA receptors (LPARs) and erythropoiesis is still not clear. In this study, we found that erythroblasts expressed both LPA(1) and LPA(3), and erythropoietic defects were observed in zLPA(3) antisense morpholino oligonucleotide-injected zebrafish embryos. In human model, our results showed that LPA enhanced the erythropoiesis in the cord blood-derived human hematopoietic stem cells (hHSCs) with erythropoietin (EPO) addition in the plasma-free culture. When hHSCs were treated with Ki16425, an antagonist of LPA(1) and LPA(3), erythropoietic process of hHSCs was also blocked, as detected by mRNA and protein expressions of CD71 and GlyA. In the knockdown study, we further demonstrated that specific knockdown of LPA(3), not LPA(1), blocked the erythropoiesis. The translocation of β-catenin into the nucleus, a downstream response of LPAR activation, was blocked by Ki16425 treatment. In addition, upregulation of erythropoiesis by LPA was also blocked by quercetin, an inhibitor of the β-catenin/T-cell factor pathway. Furthermore, the enhancement of LPA on erythropoiesis was diminished by blocking c-Jun-activated kinase/signal transducer and activator of transcription and phosphatidylinositol 3-kinase/AKT activation, the downstream signaling pathways of EPO receptor, suggested that LPA might play a synergistic role with EPO to regulate erythropoietic process. In conclusion, we first reported that LPA participates in EPO-dependent erythropoiesis through activating LPA(3).
    Stem Cells 09/2011; 29(11):1763-73. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The feasibility of using genipin cross-linked type II collagen scaffold with rabbit bone marrow mesenchymal stem cells (RBMSCs) to repair cartilage defect was herein studied. Induction of RBMSCs into chondrocytic phenotype on type II collagen scaffold in vitro was conducted using TGF-β 3 containing medium. After 3-weeks of induction, chondrocytic behavior, including marker genes expression and specific extracellular matrix (ECM) secretion, was observed. In the in vivo evaluation experiment, the scaffolds containing RBMSCs without prior induction were autologous implanted into the articular cartilage defects made by subchondral drilling. The repairing ability was evaluated. After 2 months, chondrocyte-like cells with lacuna structure and corresponding ECM were found in the repaired sites without apparent inflammation. After 24 weeks, we could easily find cartilage structure the same with normal cartilage in the repair site. In conclusion, it was shown that the scaffolds in combination of in vivo conditions can induce RBMSCs into chondrocytes in repaired area and would be a possible method for articular cartilage repair in clinic and cartilage tissue engineering.
    Cytotechnology 10/2010; 63(1):13-23. · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate C (CSC) is a kind of glycosaminoglycans (GAGs) with molecular weights of 10,000 to 50,000 Da and a high charge density. GAGs are major components in extracellular matrix (ECM), which play important role in the regulation of cell proliferation, migration, and differentiation. In this study, we studied the effects of chondroitin sulfate C (CSC) on the differentiation of human mesenchymal stem cells (MSCs) toward the chondrocyte lineage. The MSCs were either cultured on type II collagen (COL II) scaffolds with high molecular weight CSC addition in the medium (free CSC) or with free oligosaccharide CSC. Special attention was given to the effects of MSCs cultured on CSC cross-linked type II scaffolds (cross-linked CSC). According to the analysis of histology stain, gene expression, and ECM secretion, our results showed that MSCs cultured with free CSC, free oligosaccharides CSC, and on the cross-linked CSC scaffolds all would be induced into chondrocytes. Moreover, free oligosaccharide CSC present in the microenvironment could significantly up-regulate MSC chondrogenesis gene expression and stimulate cartilage ECM accumulation more than free CSC with high molecular weight after 3-week induction. Importantly, cross-linked CSC had the most excellent effects on the MSC chondrogenesis. Thus, we believed that cross-linked CSC in the scaffold would play the similar roles with free oligosaccharide CSC in the medium. Cross-linked CSC would be a potential candidate for cartilage repair in the cell therapy and tissue engineering.
    Journal of Bioscience and Bioengineering 10/2010; 111(2):226-31. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-arginine methyltransferase 1 (PRMT1) plays pivotal roles in various cellular processes. However, its role in megakaryocytic differentiation has yet to be investigated. Human leukemia K562 cells have been used as a model to study hematopoietic differentiation. In this study, we report that ectopic expression of HA-PRMT1 in K562 cells suppressed phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation as demonstrated by changes in cytological characteristics, adhesive properties, and CD41 expression, whereas knockdown of PRMT1 by small interference RNA promoted differentiation. Impairment of the methyltransferase activity of PRMT1 diminished the suppressive effect. These results provide evidence for a novel role of PRMT1 in negative regulation of megakaryocytic differentiation. Activation of ERK MAPK has been shown to be essential for megakaryocytic differentiation, although the role of p38 MAPK is still poorly understood. We show that knockdown of p38alpha MAPK or treatment with the p38 inhibitor SB203580 significantly enhanced PMA-induced megakaryocytic differentiation. Further investigation revealed that PRMT1 promotes activation of p38 MAPK without inhibiting activation of ERK MAPK. In p38alpha knockdown cells, PRMT1 could no longer suppress differentiation. In contrast, enforced expression of p38alpha MAPK suppressed PMA-induced megakaryocytic differentiation of parental K562 as well as PRMT1-knockdown cells. We propose modulation of the p38 MAPK pathway by PRMT1 as a novel mechanism regulating megakaryocytic differentiation. This study thus provides a new perspective on the promotion of megakaryopoiesis.
    Journal of Biological Chemistry 05/2010; 285(27):20595-606. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human mesenchymal stromal cells (hMSC) play a crucial role in tissue engineering and regenerative medicine, and have important clinical potential for cell therapy. However, many hMSC studies have been restricted by limited cell numbers and difficult detection in vivo. To expand the lifespan, hMSC are usually immortalized by virus-mediated gene transfer. However, these genetically modified cells easily lose critical phenotypes and stable genotypes because of insertional mutagenesis. We used a non-viral transfection method to establish human telomerase reverse transcriptase-immortalized cord blood hMSC (hTERT-cbMSC). We also established red fluorescent protein (RFP)-expressing hTERT-cbMSC (hTERT/RFP-cbMSC) by the same non-viral transfection method, and these cells were injected into a rat model with traumatic brain injury for in vivo detection analysis. The hTERT-cbMSC could grow more than 200 population doublings with a stable doubling time and maintained differentiation capacities. hTERT/RFP-cbMSC could proliferate efficiently within 2 weeks at the injury location and could be detected easily under a fluorescent microscope. Importantly, both hTERT-cbMSC and hTERT/RFP-cbMSC showed no chromosomal abnormalities by karyotype analysis and no tumor formation in severe combined immunodeficient (SCID) mice by transplantation assay. We have developed immortalized cbMSC with hTERT expression and RFP expression, which will be useful tools for stem cell research and translational study.
    Cytotherapy 03/2010; 12(4):455-65. · 3.06 Impact Factor
  • Chao-Ling Yao, Yu-Hong Wei
    Journal of Biotechnology - J BIOTECHNOL. 01/2010; 150:431-432.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A complete process for mass generation of megakaryocytes from hematopoietic stem cells under serum-free conditions has great clinical potential for rapid platelet reconstruction in thrombocytopenia patients. We have previously reported on the generation of an optimized serum-free medium (serum-free hematopoietic stem cell medium) for ex vivo expansion of CD34(+) cells. Here, we further generated large amounts of functional megakaryocytes from serum-free expanded CD34(+) cells under a complete and optimal serum-free condition for complying with clinical regulations. Serum substitutes and cytokines were screened and optimized for their concentration for megakaryocyte generation by systemically methods. Serum-free induced megakaryocytes were characterized by surface antigens, gene expression, ex vivo megakaryocyte activation ability, and ability of megakaryocyte and platelet recovery in nonobese diabetic/severe combined immunodeficient mice. The optimal serum-free megakaryocyte induction medium was Iscove's modified Dulbecco's medium containing serum substitutes (i.e., human serum albumin, human insulin, and human transferrin) and a cytokine cocktail (i.e., thrombopoietin, stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, interleukin-9, and granulocyte-macrophage colony-stimulating factor). After induction, induced megakaryocytes expressed CD41a and CD61 surface antigens, nuclear factor erythroid-derived 2 and GATA-1 transcription factors and megakaryocyte activation ability. Importantly, transplantation of induced megakaryocytes could accelerate megakaryocyte and platelet recovery in irradiated nonobese diabetic/severe combined immunodeficient mice. In conclusion, we have developed a serum-free megakaryocyte induction medium, and the combination of serum-free megakaryocyte and serum-free hematopoietic stem cell media can generate a large amount of functional megakaryocytes efficiently. Our method represents a promising source of megakaryocytes and platelets for future cell therapy.
    Experimental hematology 09/2009; 37(11):1330-1339.e5. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ex vivo generation of megakaryocytes from hematopoietic stem cells (HSCs) is crucial to HSC research and has important clinical potential for thrombocytopenia patients to rapid platelet reconstruction. In this study, factorial design and steepest ascent method were used to screen and optimize the effective cytokines (10.2 ng/ml TPO, 4.3 ng/ml IL-3, 15.0 ng/ml SCF, 5.6 ng/ml IL-6, 2.8 ng/ml FL, 2.8 ng/ml IL-9, and 2.8 ng/ml GM-CSF) in megakaryocyte induction medium that facilitate ex vivo megakaryopoiesis from CD34(+) cells. After induction, the maximum fold expansion for accumulated megakaryocytes was almost 5000-fold, and the induced megakaryocytes were characterized by analysis of gene expression, polyploidy and platelet activation ability. Furthermore, the combination of megakaryocyte induction medium and HSC expansion medium can induce and expand a large amount of functional megakaryocytes efficiently, and might be a promising source of megakaryocytes and platelets for cell therapy in the future.
    Biochemical and Biophysical Research Communications 12/2008; 378(1):112-7. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scaffolds provide a template for cell distribution, growth, differentiation and extracellular matrix accumulation in a three-dimensional environment. Recent studies have demonstrated the potential of scaffolds for enhancing articular cartilage repair both in vitro and in vivo investigations. Mesenchymal stem cells derived from human umbilical cord blood (CBMSCs) have been characterized by their multipotency to differentiate into mesenchyme-lineage cell types, including chondrocytes, osteoblasts, and adipocytes. In this study, chondrogenesis of CBMSCs was performed in a chemically synthesized thermoreversible gelation polymer (TGP). CBMSCs were embedded in the TGP and supplemented with ascorbic acid and transforming growth factor-beta 3. After a 4-week induction, the results showed that CBMSCs formed into spheroid pellets and increased in size. The induced cells in the TGP expressed specific mRNA of collagen type II, aggrecan, and Sox9 for chondrocytes. Furthermore, CBMSCs embedded in TGP had higher ratio of glycosaminoglycan secretion to DNA content than the traditional induction method by aggregating pellet culture. These results demonstrated that chemically synthesized TGP provided a competent 3-dimentional culture environment for CBMSCs to differentiate into chondrocytes and may be applied clinically to induce chondrogenic differentiation of CBMSCs for cartilage repair in the future.
    The Chinese journal of physiology 09/2008; 51(4):252-8. · 0.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA), a low-molecular-weight lysophospholipid enriched in platelets and mildly oxidized low-density lipoproteins, is known to regulate inflammation and atherosclerosis by binding to its cognate receptors. In this study, we reported that LPA upregulated interleukin-1 beta (IL-1 beta) expression in mouse J774A.1 macrophages. By using pharmacological inhibitors, it was suggested that G(i)/Rho activation and subsequent reactive oxygen species (ROS) production were involved in IL-1 beta induction. In addition, IL-1 beta induction by LPA was also observed in human primary macrophages. In summary, LPA is involved in the processes of inflammation by affecting macrophage behavior.
    Journal of Biomedical Science 06/2008; 15(3):357-63. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: After cornea transplantation, the donor's limbal zone is currently discarded as medical waste. However, the limbal zone is rich in limbal stem cells and can be used in therapeutic applications of limbus loss. This study aimed to increase the availability of limbal stem cells and develop the optimal conditions of cryopreservation for ex vivo expanded limbal stem cells. Pieces of the limbus were cultured on amniotic membrane (AM) to outgrow limbal stem cells as cell sheets for 3 weeks. Different formulas of cryoprotectants were tested to preserve the expanded cell sheets in liquid nitrogen. Before and after cryopreservation, expanded cell sheets were assessed for cellular characteristics by viability, histologic examination, and expression of ABCG2, vimentin, and keratin 3. Expanded cell sheets usually exhibited 3-6 stratified layers after 3-week culture on AM and expressed specific markers of ABCG2 and vimentin for limbal stem cells. The effects of cryopreservation with different cryoprotectants were analyzed by histopathology, stem cell markers, and cell viability. The results showed that the optimal formula of cryoprotectants for expanded limbal cell sheets was 60% Dulbecco modified Eagle medium, 30% fetal bovine serum, and 10% dimethyl sulfoxide. After 8-week cryopreservation in liquid nitrogen, the characteristics of limbal stem cells were maintained, and the average viability of thawed cells was 53.8% +/- 5.8%. These results showed that limbal stem cells expanded on AM could be cryopreserved and provide a promising source without delay, if banking, for patients with limbal stem cell deficiency in the future.
    Cornea 05/2008; 27(3):327-33. · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are important effectors of the innate immune system, which exhibits cytolytic activity against infectious agents and tumor cells. NK cells are derived from CD34(+) hematopoietic stem cells (HSCs). Human umbilical cord blood (UCB) has been recognized as a rich source of HSCs. Previously, we have reported an optimized serum-free medium for ex vivo expansion of CD34(+) cells from UCB. In this study, the serum-free, expanded CD34(+) cells were tested to differentiate into NK cells and their induction kinetics. After 5 weeks of induction, the induced NK cells were characterized by analysis of surface antigens, IFN-gamma secretion, and cytotoxicity against K562 cells. The results indicated that NK cells derived from the serum-free, expanded CD34(+) cells exhibited both characteristics and functions of NK cells. Furthermore, the serum-free, expanded CD34(+) cells showed a significantly higher NK cell differentiation potential than freshly isolated CD34(+) cells. NK cells induced from serum-free, expanded CD34(+) cells showed a higher concentration of IFN-gamma secretion and ability of cytotoxicity than those from freshly isolated CD34(+) cells. Therefore, ex vivo-expanded CD34(+) cells in optimized serum-free medium could differentiate into NK cells and provided a promising cell source for immunotherapeutic approaches.
    Stem Cells and Development 01/2008; 16(6):1043-51. · 4.67 Impact Factor
  • Chao-Ling Yao, Shiaw-Min Hwang
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cord blood (CB), collected from the postpartum placenta and umbilical cord, has been identified as a rich source of hematopoietic stem cells (HSCs) and provides an alternative to bone marrow or mobilized peripheral blood transplantation. However, the major restriction of CB transplantation is the low number of HSCs in each CB unit and limits its use in clinical transplantation. The development of ex vivo culture systems that facilitate the expansion of HSCs is crucial to stem cell research and clinical application. In this chapter, we describe the protocols to isolate HSCs from CB, expand HSCs in serum-free condition, and analyze HSCs. This information is benefical for successful use of CB stem cells in therapeutic studies.
    Methods in molecular biology (Clifton, N.J.) 02/2007; 407:165-75. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of ex vivo expansion of hematopoietic stem cells (HSCs) is a promising approach to restore the required bone marrow function of patients with hematological disorders. Previously, we have reported the development of an optimized serum-free and cytokines-limited defined medium using statistic methodology for umbilical cord blood-derived HSC expansion. The aim of this study was to analyze further the characteristics and functions of cells in vitro and in vivo when cultured in this defined medium. After a 7-day batch culture, the average absolute fold expansions for CD133(+) cells, CD34(+)CD133(+) cells, CD34(+)CD38() cells, CD133(+)CD38(-) cells, CD34(+)CXCR4(+) cells, CD133(+)CXCR4(+) cells, and long-term culture-initiating cells were 21-, 20-, 723-, 618-, 160-, 384-, and 8-fold, respectively. The high enrichment of CD38(-) cells and CXCR4(+) cells of the CD34(+) subpopulation provided a very early uncommitted HSC proliferation and homing ability. Furthermore, the expanded cells showed a high level of telomerase activity to maintain their telomere length and repopulated the lethally irradiated NOD/SCID mice in vivo. These results indicated that the cytokines limited expanded cells from CD133(+) cells could substantially support simultaneous expansion of various stem/progenitor cells and engraft with the expanded cells from a low number of HSCs initially.
    Stem Cells and Development 03/2006; 15(1):70-8. · 4.67 Impact Factor
  • Chao-Ling Yao, Shiaw-Min Hwang
    Experimental Hematology - EXP HEMATOL. 01/2005; 33(11):1273-1274.

Publication Stats

203 Citations
57.58 Total Impact Points

Institutions

  • 2010–2013
    • Yuan Ze University
      • Department of Chemical Engineering & Materials Science
      Taoyuan City, Taiwan, Taiwan
  • 2003–2012
    • National Tsing Hua University
      • Department of Chemical Engineering
      Hsinchu, Taiwan, Taiwan
  • 2003–2010
    • Food Industry Research and Development Institute
      Hsin-chu-hsien, Taiwan, Taiwan