Young Sun Lee

Chungnam National University, Daiden, Daejeon, South Korea

Are you Young Sun Lee?

Claim your profile

Publications (68)424.91 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new set of very high signal-to-noise (S/N > 100/1), medium-resolution (R~3000) optical spectra have been obtained for 302 of the candidate "weak-metal" stars selected by Bidelman & MacConnell. We use these data to calibrate the recently developed generalization of the SEGUE Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (Teff, log g , and [Fe/H]) for these non-SDSS/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series. The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities -1.8 < [Fe/H] <= -0.8 exhibit orbital eccentricities e < 0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy vs. angular momentum diagram. A comparison is made with recent results for a similar-size sample of RAVE stars from Ruchti et al. We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.
    The Astrophysical Journal 08/2014; 794(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Way's disk, and examined how this gradient varies for different [a/Fe] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the survey's consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.
    The Astrophysical Journal 05/2014; 791(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report estimated carbon-abundance ratios, [C/Fe], for seven newly-discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph (WiFeS) on the ANU 2.3m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretion from an AGB donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5 - 2.0 solar masses and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly-discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.
    03/2014; 787(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parametrized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.
    The Astrophysical Journal 02/2014; 784(2). · 6.73 Impact Factor
  • 01/2014; 782(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor ([Fe/H]<-3.0), with four having [Fe/H]<-3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R~35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H]<-3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit over-abundances of their s-process elements, and hence may be additional examples of the so-called CEMP-no class of objects.
    The Astrophysical Journal 11/2013; 781(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Galactic mean metallicity maps derived from the first year of the SDSS-III APOGEE experiment. Mean abundances in different zones of Galactocentric radius (0 < R < 15 kpc) at a range of heights above the plane (0 < |z| < 3 kpc), are derived from a sample of nearly 20,000 stars with unprecedented coverage, including stars in the Galactic mid-plane at large distances. We also split the sample into subsamples of stars with low and high-[{\alpha}/M] abundance ratios. We assess possible biases in deriving the mean abundances, and find they are likely to be small except in the inner regions of the Galaxy. A negative radial gradient exists over much of the Galaxy; however, the gradient appears to flatten for R < 6 kpc, in particular near the Galactic mid-plane and for low-[{\alpha}/M] stars. At R > 6 kpc, the gradient flattens as one moves off of the plane, and is flatter at all heights for high-[{\alpha}/M] stars than for low-[{\alpha}/M] stars. Alternatively, these gradients can be described as vertical gradients that flatten at larger Galactocentric radius; these vertical gradients are similar for both low and high-[{\alpha}/M] populations. Stars with higher [{\alpha}/M] appear to have a flatter radial gradient than stars with lower [{\alpha}/M]. This could suggest that the metallicity gradient has grown steeper with time or, alternatively, that gradients are washed out over time by migration of stars.
    The Astronomical Journal 11/2013; 147(5). · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged]
    The Astronomical Journal 10/2013; 146(5). · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff stars, selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration, with predictions from asymptotic giant-branch (AGB) mass-transfer models. We consider two initial mass functions (IMFs)-a Salpeter IMF, and a mass function with a characteristic mass of 10 solar mass. These comparisons indicate good agreement between the observed CEMP frequencies for stars with [Fe/H] > -1.5 and a Salpeter IMF, but not with an IMF having a higher characteristic mass. Thus, while the adopted AGB model works well for low-mass progenitor stars, it does not do so for high-mass progenitors. Our results imply that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a "chemical time" between [Fe/H] = -2.5 and [Fe/H] = -1.5. The corrected CEMP frequency for the turnoff stars with [Fe/H] < -3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] = -3.0. [abridged]
    The Astrophysical Journal 10/2013; 788(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identify 13 candidate hypervelocity stars from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) G and K dwarf samples. Previous searches for hypervelocity stars have only focused on large radial velocities; in this study we also use proper motions to select the candidates. We determine the hypervelocity likelihood of each candidate, considering the significant errors often associated with high proper motion stars via Monte Carlo simulations. We find that more than half of the candidates exceed their escape velocities with at least 90% probability. All of our candidates also have less than a 60% chance of being a high velocity fluke within the SEGUE sample. Based on orbits calculated using the observed 6-d positions and velocities, few, if any, of these candidates originate from the Galactic Center. If these candidates are truly hypervelocity stars, they were not ejected by interactions with the Milky Way's supermassive black hole. This calls for a more serious examination of alternative hypervelocity star ejection scenarios.
    The Astrophysical Journal 08/2013; 780(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514--1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.
    The Astrophysical Journal Supplement Series 07/2013; 211(2). · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move on eccentric orbits. However, our understanding of the motions of distant, in-situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al. (2010).
    The Astrophysical Journal Letters 12/2012; 763(1). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5 - 8 kpc and |b| > 35 deg, and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically-selected local halo stars from Ryan & Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan & Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] ~ -1.7 and -2.3, the metal-poor component accounts for ~20% - 35% of the entire halo population in this distance range.
    The Astrophysical Journal 11/2012; 763(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an online catalog of distance determinations for 4781 K giants, most of which are members of the Milky Way's stellar halo. Their spectra from SDSS/SEGUE provide metallicities with accuracies \Delta [Fe/H]\approx\pm0.2 dex and giant-dwarf distinction. The distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g-r)_0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to propagate the errors in metallicities, magnitudes, and colors properly into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays little role in the distance estimates, but that neglecting the luminosity prior would lead to a systematic distance modulus bias of up to 0.2 mag. We find a median distance precision of 12%, with distance estimates most precise for the least metal-poor stars near the tip of the red-giant branch. We use globular and open clusters to verify the precision and accuracy of our distance estimates. The stars in our publicly available catalog are up to 110 kpc distant from the Galactic center, with 270 stars beyond 50 kpc, forming the largest sample of distant tracers in the Galactic halo.
    The Astrophysical Journal 11/2012; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ < -3$, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe]$> +0.7$) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turn-off stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.
    The Astronomical Journal 10/2012; 145(1). · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.
    The Astrophysical Journal Supplement Series 07/2012; 203(2). · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the \alpha-element abundance ratio, [\alpha/Fe], of 5620 stars, observed by the Sloan Extension for Galactic Understanding and Exploration survey in the region 6 kpc < R < 16 kpc, 0.15 kpc < |Z| < 1.5 kpc, as a function of Galactocentric radius R and distance from the Galactic plane |Z|. Our results show that the high-\alpha\ thick disk population has a short scale length (L_thick ~ 1.8 kpc) compared to the low-\alpha population, which is typically associated with the thin disk. We find that the fraction of high-\alpha\ stars in the inner disk increases at large |Z|, and that high-\alpha\ stars lag in rotation compared to low-\alpha\ stars. In contrast, the fraction of high-\alpha\ stars in the outer disk is low at all |Z|, and high- and low-\alpha\ stars have similar rotational velocities up to 1.5 kpc from the plane. We interpret these results to indicate that different processes were responsible for the high-\alpha\ populations in the inner and outer disk. The high-\alpha\ population in the inner disk has a short scale length and large scale height, consistent with a scenario in which the thick disk forms during an early gas-rich accretion phase. Stars far from the plane in the outer disk may have reached their current locations through heating by minor mergers. The lack of high-\alpha\ stars at large R and |Z| also places strict constraints on the strength of radial migration via transient spiral structure.
    The Astrophysical Journal 04/2012; 752(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the vertical kinematics of stars in the Milky Way's stellar disk inferred from SDSS/SEGUE G-dwarf data, deriving the vertical velocity dispersion, \sigma_z, as a function of vertical height |z| and Galactocentric radius R for a set of 'mono-abundance' sub-populations of stars with very similar elemental abundances [\alpha/Fe] and [Fe/H]. We find that all components exhibit nearly isothermal kinematics in |z|, and a slow outward decrease of the vertical velocity dispersion: \sigma_z (z,R|[\alpha/Fe],[Fe/H]) ~ \sigma_z ([\alpha/Fe],[Fe/H]) x \exp (-(R-R_0)/7 kpc}). The characteristic velocity dispersions of these components vary from ~ 15 km/s for chemically young, metal-rich stars, to >~ 50 km/s for metal poor stars. The mean \sigma_z gradient away from the mid plane is only 0.3 +/- 0.2 km/s/kpc. We find a continuum of vertical kinetic temperatures (~\sigma^2_z) as function of ([\alpha/Fe],[Fe/H]), which contribute to the stellar surface mass density as \Sigma_{R_0}(\sigma^2_z) ~ \exp(-\sigma^2_z). The existence of isothermal mono-abundance populations with intermediate dispersions reject the notion of a thin-thick disk dichotomy. This continuum of disks argues against models where the thicker disk portions arise from massive satellite infall or heating; scenarios where either the oldest disk portion was born hot, or where internal evolution plays a major role, seem the most viable. The wide range of \sigma_z ([\alpha/Fe],[Fe/H]) combined with a constant \sigma_z(z) for each abundance bin provides an independent check on the precision of the SEGUE abundances: \delta_[\alpha/Fe] ~ 0.07 dex and \delta_[Fe/H] ~ 0.15 dex. The radial decline of the vertical dispersion presumably reflects the decrease in disk surface-mass density. This measurement constitutes a first step toward a purely dynamical estimate of the mass profile the disk in our Galaxy. [abridged]
    The Astrophysical Journal 02/2012; 755(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We find that the relative contribution of satellite galaxies accreted at high redshift to the stellar population of the Milky Way's smooth halo increases with distance, becoming observable relative to the classical smooth halo about 15 kpc from the Galactic center. In particular, we determine line-of-sight-averaged [Fe/H] and [alpha/Fe] in the metal-poor main-sequence turnoff (MPMSTO) population along every Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopic line of sight. Restricting our sample to those lines of sight along which we do not detect elements of cold halo substructure (ECHOS), we compile the largest spectroscopic sample of stars in the smooth component of the halo ever observed in situ beyond 10 kpc. We find significant spatial autocorrelation in [Fe/H] in the MPMSTO population in the distant half of our sample beyond about 15 kpc from the Galactic center. Inside of 15 kpc however, we find no significant spatial autocorrelation in [Fe/H]. At the same time, we perform SEGUE-like observations of N-body simulations of Milky Way analog formation. While we find that halos formed entirely by accreted satellite galaxies provide a poor match to our observations of the halo within 15 kpc of the Galactic center, we do observe spatial autocorrelation in [Fe/H] in the simulations at larger distances. This observation is an example of statistical chemical tagging and indicates that spatial autocorrelation in metallicity is a generic feature of stellar halos formed from accreted satellite galaxies.
    The Astrophysical Journal 02/2012; 749(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The observed radial and vertical metallicity distribution of old stars in the Milky Way disk provides a powerful constraint on the chemical enrichment and dynamical history of the disk system. We present the radial metallicity gradient, Δ[Fe/H]/ΔR, as a function of height above the plane, |Z|, using 7010 main-sequence turnoff stars observed by the Sloan Extension for Galactic Understanding and Exploration survey. The sample consists of mostly old thin and thick disk stars, with a minimal contribution from the stellar halo, in the region 6 kpc < R < 16 kpc, 0.15 kpc < |Z| < 1.5 kpc. The data reveal that the radial metallicity gradient becomes flat at heights |Z| > 1 kpc. The median metallicity at large |Z| is consistent with the metallicities seen in outer disk open clusters, which exhibit a flat radial gradient at [Fe/H] ~–0.5. We note that the outer disk clusters are also located at large |Z|; because the flat gradient extends to small R for our sample, there is some ambiguity in whether the observed trends for clusters are due to a change in R or |Z|. We therefore stress the importance of considering both the radial and vertical directions when measuring spatial abundance trends in the disk. The flattening of the gradient at high |Z| also has implications on thick disk formation scenarios, which predict different metallicity patterns in the thick disk. A flat gradient, such as we observe, is predicted by a turbulent disk at high redshift, but may also be consistent with radial migration, as long as mixing is strong. We test our analysis methods using a mock catalog based on the model of Schönrich & Binney, and we estimate our distance errors to be ~25%. We also show that we can properly correct for selection biases by assigning weights to our targets.
    The Astrophysical Journal 01/2012; 746(2):149. · 6.73 Impact Factor

Publication Stats

2k Citations
424.91 Total Impact Points

Institutions

  • 2014
    • Chungnam National University
      • Department of Astronomy and Space Science
      Daiden, Daejeon, South Korea
    • Macquarie University
      • Department of Physics and Astronomy
      Sydney, New South Wales, Australia
  • 2012–2014
    • New Mexico State University
      • Department of Astronomy
      Las Cruces, New Mexico, United States
    • Case Western Reserve University
      • Department of Astronomy
      Cleveland, Ohio, United States
    • University of California Observatories
      Santa Cruz, California, United States
    • The Ohio State University
      • Department of Astronomy
      Columbus, Ohio, United States
    • CUNY Graduate Center
      New York City, New York, United States
    • Universität Heidelberg
      • Centre for Astronomy (ZAH)
      Heidelburg, Baden-Württemberg, Germany
  • 2013
    • University of Virginia
      • Department of Astronomy
      Charlottesville, Virginia, United States
  • 2005–2012
    • Michigan State University
      • Department of Physics and Astronomy
      East Lansing, Michigan, United States
  • 2011
    • State of Michigan
      Lansing, Michigan, United States
    • University of California, Santa Cruz
      • Department of Astronomy and Astrophysics
      Santa Cruz, California, United States
  • 2010
    • Texas Tech University
      • Department of Physics
      Lubbock, Texas, United States
  • 2009
    • Fermi National Accelerator Laboratory (Fermilab)
      Batavia, Illinois, United States
  • 2008
    • New Mexico Institute of Mining and Technology
      • Department of Electrical Engineering
      Socorro, New Mexico, United States