S Kawazu

Obihiro University of Agriculture and Veterinary Medicine, Obibiro, Hokkaidō, Japan

Are you S Kawazu?

Claim your profile

Publications (191)475.91 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd) or human dihydrofolate reductase (hdhfr). In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP) and human dihydrofolate reductase (hDHFR), was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP) and blasticidin-S deaminase (BSD). Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1) gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO) parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.
    PLoS ONE 05/2015; 10(5):e0125993(5). DOI:10.1371/journal.pone.0125993. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid diagnostic tests (RDTs) have been considered as an ideal alternative for light microscopy to detect malaria parasites especially in remote areas. The development and improvement of RDTs is an area of intensive research in the last decade. To date, few parasite proteins have been targeted in RDTs which are known to have certain deficiencies and made the researchers to look for other promising candidates to address this problem. Plasmodium falciparum thioredoxin peroxidase 1 (PfTPx-1) is abundantly expressed in the cytoplasm of the parasite and well conserved across Plasmodium species making this antigen a promising target for malaria diagnosis. Several monoclonal antibodies (mAbs) were produced against PfTPx-1. The binding affinities of mAbs were measured. Several immunochromatographic tests (ICTs) were developed using different combination of mAbs. All mAbs showed promising affinities to be used for diagnosis. The sensitivities of ICTs were evaluated using recombinant PfTPx-1 whose results lead us to the preparation of 4 different ICTs. These tests showed positive reaction with P. falciparum in vitro culture supernatant indicating the release of PfTPx-1 during schizont rupture. Altogether, these findings suggest that PfTPx-1 is a promising biomarker to diagnose P. falciparum infection. However, the diagnostic performance of this antigen should be further validated using clinical samples. Copyright © 2015. Published by Elsevier Inc.
    Experimental Parasitology 04/2015; 154. DOI:10.1016/j.exppara.2015.04.018 · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal integration of bovine leukemia virus (BLV) proviral DNA into bovine genomes was detected in peripheral blood from two clinical cases of enzootic bovine leukosis (EBL) without enlargement of superficial lymph nodes. A BLV-specific probe hybridized with 1 to 3 EcoRI and HindIII fragments in these 2 atypical EBL cattle by Southern blotting and hybridization, as well as in 3 typical EBL cattle. The probe also hybridized to a large number of EcoRI and HindIII fragments in 5 cattle with persistent leukosis. These results suggest that the detection of monoclonal integration of BLV provirus into the host genome may serve as a marker of monoclonal proliferation and malignancy in difficult to diagnose EBL cattle.
    Journal of Veterinary Medical Science 03/2015; DOI:10.1292/jvms.14-0591 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total of 231 serum samples were collected from sheep (n=9), goats (n=99) and cattle (n=123) in northeastern KwaZulu-Natal, South Africa. Trypanosome infection was detected using Trypanosoma brucei brucei crude antigen (TbbCA) and T. congolense crude antigen (TcoCA) ELISA assays. Recombinant antigen (T. evansi GM6 which consisted of 4 repeat domains, TeGM6-4r) ELISA and immunochromatographic test (ICT) were also used. Crude antigen ELISA, TeGM6-4r-ELISA and ICT detected 27.3%, 29% and 19.9% of trypanosome seropositive samples, respectively. Trypanosome infection prevalence in cattle and goats was 35.8-46.3% and 0-9.1%, respectively. Out of 9 sheep serum samples, 2-4 sera (22.2-44.4%) were positive. The detection performance of crude and recombinant antigen ELISAs was relatively similar (K=0.6-0.7); both are recommended for reference diagnosis and large scale epidemiological surveys. There is potential application for ICT in on-site diagnosis, but its sensitivity should be improved.
    Journal of Veterinary Medical Science 03/2015; 77(2):217-220. DOI:10.1292/jvms.14-0330 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A nearly complete reversal of chloroquine (CQ)-resistance in CQ-resistant Plasmodium falciparum K-1 strain, with significant decrease in the IC50 value from 1050 ± 95 nM to 14 ± 2 nM, was achieved in vitro by simultaneous administration of 2-aminoethyl diphenylborinate (2-APB). The CQ-resistance reversing activity of 2-APB, which showed the same efficacy as verapamil, was also observed in an in vivo mouse infection model with CQ-resistant P. chabaudi AS (30 CQ) strain. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Antimicrobial Agents and Chemotherapy 02/2015; 59(5). DOI:10.1128/AAC.04805-14 · 4.45 Impact Factor
  • Biophysical Journal 01/2015; 108(2):614a. DOI:10.1016/j.bpj.2014.11.3339 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The zoonotic characteristic of the human parasite Schistosoma japonicum infecting a significant number of wild and domestic animals highlights the need to develop a unified surveillance in multiple host species for a strengthened schistosomiasis control. It has been shown in several studies that water buffaloes and dogs are considered important reservoirs in the transmission of the schistosome parasite to humans. Recombinant antigens like thioredoxin peroxidase-1 (SjTPx-1) and tandem repeat proteins (Sj1TR, Sj7TR) have been shown to be good diagnostic antigens individually in humans, water buffaloes, and dogs in previous studies. Mixing these antigens together in a cocktail-ELISA might not only improve their diagnostic potentials but rather produce a multi-host species detection means for zoonotic schistosomiasis. In this study, we aimed to develop and optimize cocktail-ELISA by testing different combinations of these recombinant antigens in humans, water buffaloes, and dogs. As compared with the diagnostic potential calculated for each of the three recombinant antigens used, their combination has presented improved specificities, positive predictive values, and kappa values. Using samples collected from various endemic areas in the Philippines, results showed that the combination of SjTPx-1/Sj7TR/Sj1TR has the highest sensitivity in humans (84.1 %), water buffaloes, and dogs (80 %) and specificity (100 %) in all host species. This study therefore suggests the use of cocktail-ELISA in improving the zoonotic surveillance in schistosomiasis endemic areas.
    Parasitology Research 01/2015; 114(3). DOI:10.1007/s00436-015-4312-7 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The previous release of our Full-parasites database (http://fullmal.hgc.jp/) brought enhanced functionality, an expanded full-length cDNA content, and new RNA-Seq datasets from several important apicomplexan parasites. The 2015 update witnesses the major shift in the databases content with focus on diverse transcriptomes of the apicomplexan parasites. The content of the database was substantially enriched with transcriptome information for new apicomplexan parasites. The latest version covers a total of 17 species, with addition of our newly generated RNA-Seq data of a total of 909 150 388 tags. Moreover, we have generated and included two novel and unique datasets, which represent diverse nature of transcriptomes in individual parasites in vivo and in vitro. One is the data collected from 116 Indonesian patients infected with Plasmodium falciparum. The other is a series of transcriptome data collected from a total of 38 single cells of P. falciparum cultured in vitro. We believe that with the recent advances our database becomes an even better resource and a unique platform in the analysis of apicomplexan parasites and their interaction with their hosts. To adequately reflect the recent modifications and the current content we have changed the database name to DB-AT—DataBase of Apicomplexa Transcriptomes.
    Nucleic Acids Research 01/2015; DOI:10.1093/nar/gku1240 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii is the causative pathogen for Toxoplasmosis. Bumped kinase inhibitor 1NM-PP1 inhibits the growth of T. gondii by targeting TgCDPK1. However, we recently reported that resistance to 1NM-PP1 can be acquired via a mutation in T. gondii mitogen-activated protein kinase like 1 (TgMAPKL-1). Further characterization of how this TgMAPKL-1 mutation restores the inhibitory effect of 1NM-PP1 would shed further light on the function of TgMAPKL-1 in the parasite life cycle. Therefore, we made parasite clones with TgMAPKL-1 mutated at the gatekeeper residue Ser 191, which is critical for 1NM-PP1 susceptibility. Host cell lysis of RH/ku80-/HA-TgMAPKL-1S191A was completely inhibited at 250 nM 1NM-PP1, whereas that of RH/ku80-/HA-TgMAPKL-1S191Y was not. By comparing 1NM-PP1-sensitive (RH/ku80-/HA-TgMAPKL-1S191A) and -resistant (RH/ku80-/HA-TgMAPKL-1S191Y) clones, we observed that inhibition of TgMAPKL-1 blocked cell cycle progression after DNA duplication. Morphological analysis revealed that TgMAPKL-1 inhibition caused enlarged parasite cells with many daughter cell scaffolds and imcomplete cytokinesis. We conclude that the mutation in TgMAPKL-1 restored the cell cycle-arresting effect of 1NM-PP1 on T. gondii endodyogeny. Given that endodyogeny is the primary mechanism of cell division for both the tachyzoite and bradyzoite stages of this parasite, TgMAPKL-1 may be a promising target for drug development. Exploration of the signals that regulate TgMAPKL-1 will provide further insights into the unique mode of T. gondii cell division.
    12/2014; 13(1). DOI:10.1016/j.ijpddr.2014.12.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The previous release of our Full-parasites database (http://fullmal.hgc.jp/) brought enhanced functionality, an expanded full-length cDNA content, and new RNA-Seq datasets from several important apicomplexan parasites. The 2015 update witnesses the major shift in the databases content with focus on diverse transcriptomes of the apicomplexan parasites. The content of the database was substantially enriched with transcriptome information for new apicomplexan parasites. The latest version covers a total of 17 species, with addition of our newly generated RNA-Seq data of a total of 909 150 388 tags. Moreover, we have generated and included two novel and unique datasets, which represent diverse nature of transcriptomes in individual parasites in vivo and in vitro. One is the data collected from 116 Indonesian patients infected with Plasmodium falciparum. The other is a series of transcriptome data collected from a total of 38 single cells of P. falciparum cultured in vitro. We believe that with the recent advances our database becomes an even better resource and a unique platform in the analysis of apicomplexan parasites and their interaction with their hosts. To adequately reflect the recent modifications and the current content we have changed the database name to DB-AT-DataBase of Apicomplexa Transcriptomes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 11/2014; · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine babesiosis is a livestock disease known to cause economic losses in endemic areas. The apicomplexan parasite Babesia bovis is able to invade and destroy the host's erythrocytes leading to the serious pathologies of the disease, such as anemia and hemoglobinuria. Understanding the egress mechanisms of this parasite is therefore a key step to develop new therapeutic strategies. In this study, the possible involvement of Ca(2+) in the egress of B. bovis merozoites from infected erythrocytes was investigated. Egress was artificially induced in vitro using calcium ionophore A23187 and thapsigargin to increase Ca(2+) concentration in the cytosol of the parasite cells. The increased intracellular Ca(2+) concentration following these treatments was confirmed using live cell Ca(2+) imaging with confocal laser scanning microscopy. Based on our findings, we suggest a Ca(2+) signalling pathway in the egress of B. bovis merozoites.
    Journal of Veterinary Medical Science 10/2014; 77(1). DOI:10.1292/jvms.14-0391 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic observation of thioredoxin peroxidase-1 (TPx-1) gene-disrupted Plasmodium berghei (TPx-1 KO) in the liver-stage was performed with an in vitro infection system in order to investigate defective liver-stage development in a mouse infection model. Indirect immunofluorescence microscopy assay with anti-circumsporozoite protein antibody revealed that in the liver schizont stage, TPx-1 KO parasite cells were significantly smaller than cells of the wild-type parent strain (WT). Indirect immunofluorescence microscopy assay with anti-merozoite surface protein 1 antibody, which was used to evaluate late schizont-stage development, indicated that TPx-1 KO schizont development was similar to WT strain development towards the merozoite-forming stage (mature schizont). However, fewer merozoites were produced in the mature TPx-1 KO schizont than in the mature WT schizont. Taken together, the results suggest that TPx-1 may be involved in merozoite formation during liver schizont development.
    Parasitology International 10/2014; 64(3). DOI:10.1016/j.parint.2014.09.013 · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaria parasites are under oxidative attack throughout their life cycle in human body and mosquito vector. Therefore, Plasmodium antioxidant defenses are crucial for its survival and being considered as interesting target for antimalarial drug design. Plasmodium knowlesi has emerged recently from its simian host to human in Southeast Asia and has been recognized as the fifth Plasmodium species that can cause human malaria. In this study, we cloned and characterized thioredoxin peroxidase 1 from P. knowlesi (PkTPx-1). PkTPx-1 gene was cloned, and recombinant protein was produced by heterologous overexpression in Escherichia coli. The recombinant protein was used for evaluation of enzymatic activity and polyclonal antibody production. Using the recombinant PkTPx-1 protein, its antioxidant activity was confirmed in a mixed-function oxidation assay where PkTPx-1 prevented nicking of DNA by hydroxyl radicals. PkTPx-1 was able to bind to double-strand DNA and RNA and had RNA chaperone activity in a nucleic acid melting assay indicating new function of PkTPx-1 other than antioxidant activity. Using specific polyclonal antibodies, it was indicated that PkTPx-1 is expressed in the cytoplasm of the parasite. Altogether, these results suggest that PkTPx-1 not only protects the parasite from the adverse effects of reactive oxygen species but also has RNA chaperone activity.
    Parasitology Research 08/2014; 113(11). DOI:10.1007/s00436-014-4060-0 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal African trypanosomosis (AAT), caused by Trypanosoma congolense, is widespread throughout sub-Saharan Africa. There are significant concerns related to the current drugs available for the treatment of AAT due to their limited effectiveness across species and their adverse effects. Moreover, drug resistant trypanosomes have recently been reported in the field. High throughput screening (HTS) of large chemical compound library collections is a promising approach for identifying novel drug candidates. While HTS for Trypanozoon trypanosomes, T. brucei sspp. and T. evansi is well established, no assays have been developed for T. congolense. In the present study, the authors developed an ATP-based luciferase viability assay for T. congolense in a 96-well plate format. The calculated 50% inhibitory concentration (IC50) values for pentamidine and diminazene were 10-100 times higher in T. congolense than in T. brucei. This result suggests that the transporters for the two tested compounds differ between T. congolense and T. brucei. This assay could further be applied to screen novel chemical compounds for the treatment of AAT caused by T. congolense.
    Journal of Veterinary Medical Science 07/2014; 76(11). DOI:10.1292/jvms.14-0273 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 10(2) parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasite's alpha-tubulin promoter. Renilla luciferase activity was detected with at least 10(2) parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs "bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.
    Analytical Biochemistry 06/2014; 464. DOI:10.1016/j.ab.2014.06.018 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a 'malaria mutator'), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3' → 5' exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175-178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.
    DNA Research 03/2014; 21(4). DOI:10.1093/dnares/dsu009 · 4.98 Impact Factor
  • Source
    Hassan Hakimi, Satoru Kawai, Shin-Ichiro Kawazu
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is the most important parasitic disease with global concern. Plasmodium knowlesi recently has emerged from its natural simian host as a significant cause of human malaria, particularly in Malaysian Borneo. Therefore, it has been added as the fifth human Plasmodium specie which is widely distributed in Southeast Asia. Recent developments of new molecular tools enhanced our understanding about the key features of this malaria parasite. Here, we review some of the ways in which molecular approaches might be used for epidemiology of P. knowlesi and finally lead to an efficient control of malaria.
    03/2014; 4(1):20-4. DOI:10.4103/2229-5070.129154
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca2+) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca2+ imaging showed that LZ treatment completely abolished Ca2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3-Ca2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.
    Biochemical and Biophysical Research Communications 03/2014; 446(1). DOI:10.1016/j.bbrc.2014.02.070 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma congolense is a major livestock pathogen in Africa, causing large economic losses with serious effects on animal health. Reliable serodiagnostic tests are therefore urgently needed to control T. congolense infection. In this study, we have identified one T. congolense protein as a new candidate serodiagnostic antigen. The 46.4 kDa protein (TcP46, Gene ID: TcIL3000.0.25950) is expressed 5.36 times higher in metacyclic forms than epimastigote forms. The complete nucleotide sequences of TcP46 contained an open reading frame of 1,218 bp. Southern blot analysis indicated that at least two copies of the TcP46 gene were tandemly-arranged in the T. congolense genome. The recombinant TcP46 (rTcP46) was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Western blot analysis and confocal laser scanning microscopy revealed that the native TcP46 protein is expressed in the cytoplasm during all life-cycle stages of the parasite. Moreover, an enzyme-linked immunosorbent assay (ELISA) based on rTcP46 detected the specific antibodies as early as 8 days post-infection from mice experimentally infected with T. congolense. No cross-reactivity was observed in the rTcP46-based ELISA against serum samples from cattle experimentally infected with Babesia bigemina, B. bovis, and Anaplasma marginale. These results suggest that rTcP46 could be used as a serodiagnostic antigen for T. congolense infection.
    Journal of Veterinary Medical Science 02/2014; 76(6). DOI:10.1292/jvms.13-0462 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma evansi infection, or surra, is currently affecting various species of animals, especially water buffaloes. Since diagnosis is an important aspect of surra control, development of novel diagnostic antigens is of interest to implement and improve the currently utilized methods. Our study evaluated the tandem repeat antigen TeGM6-4r in T. evansi antibody detection in water buffaloes. TeGM6-4r-based ELISA was performed with 20 positive and 8 negative controls and 484 field samples from water buffaloes in Northern Vietnam. To examine cross-reactivity, sera from Japanese cattle that had been experimentally infected with Theileria orientalis (n=10), Babesia bovis (n=3), Babesia bigemina (n=7) and Trypanosoma theileri (n=59) were included in the study. The sensitivity of the test was 80%. TeGM6-4r did not react with Theileria or Babesia infected sera, however it showed cross reactivity with 11/59 T. theileri infected samples. The reference test, CATT/T. evansi also reacted with 3/59 T. theileri infected sera. The lysate antigen-based ELISA reacted with 4/59 T. theileri, 9/10 Theileria and 3/10 Babesia infected sera. In contrast, TeGM6-4r-based ELISA was 86.3% sensitive and 58.3% specific in the screening of field samples. The average seroprevalence of T. evansi infection among water buffaloes in Northern Vietnam was 27.1% by CATT/T. evansi and 53.7% by TeGM6-4r. Seroprevalence in the five surveyed provinces ranged from 17.4% to 39.8% in the reference test, and 47.3% to 67.3% in the recombinant antigen based test. The finding indicated that the disease is still widely endemic in the area and that surveillance programs need to be carried out regularly to better control surra. We proposed TeGM6-4r as a useful serodiagnostic antigen for the detection and epidemiological surveillance of T. evansi infection among water buffaloes.
    Veterinary Parasitology 01/2014; 201(1-2). DOI:10.1016/j.vetpar.2014.01.009 · 2.55 Impact Factor

Publication Stats

2k Citations
475.91 Total Impact Points

Institutions

  • 2007–2015
    • Obihiro University of Agriculture and Veterinary Medicine
      • National Research Center for Protozoan Diseases
      Obibiro, Hokkaidō, Japan
  • 2014
    • Jichi Medical University
      • Department of Infection and Immunity
      Totigi, Tochigi, Japan
  • 2012
    • TOYAMA Chemical
      Edo, Tōkyō, Japan
    • National Center for Global Health and Medicine in Japan
      Edo, Tōkyō, Japan
  • 2010
    • Infectious Disease Research Institute
      Seattle, Washington, United States
  • 1990–2001
    • Saitama Medical University
      • • Saitama Medical Center
      • • Department of Internal Medicine
      Saitama, Saitama, Japan
  • 2000
    • Yamaguchi University
      Yamaguti, Yamaguchi, Japan
  • 1991–2000
    • National Institute of Animal Health
      Tsukuba, Ibaraki, Japan
  • 1991–1998
    • Gunma University
      • • School of Health Science
      • • School of Medicine
      Maebashi, Gunma Prefecture, Japan
  • 1994–1996
    • The University of Calgary
      • Department of Microbiology, Immunology and Infectious Diseases
      Calgary, Alberta, Canada
    • Veterinary Research Institute of Malaysia
      Ipoh, Perak, Malaysia
  • 1987
    • Toranomon Hospital
      Edo, Tōkyō, Japan
  • 1975–1977
    • The University of Tokyo
      • Division of Internal Medicine
      Edo, Tōkyō, Japan