D Branch Moody

Beverly Hospital, Boston MA, BVY, Massachusetts, United States

Are you D Branch Moody?

Claim your profile

Publications (105)1130.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The lack of rapid, reliable diagnostic tests that correlate with bacterial load remains a significant impediment to effective diagnosis, treatment, and clinical trials for tuberculosis. To develop tests based on products secreted by tubercle bacilli that are strictly associated with viability, we evaluated three bacterial-derived, species-specific, small molecules as biomarkers: two mycobactin siderophores and tuberculosinyladenosine. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we demonstrated the presence of one or both mycobactins and/or tuberculosinyladenosine in serum and whole lung tissues from infected mice and sputum, cerebrospinal fluid, or lymph nodes from infected patients but not uninfected controls. Detection of the target molecules distinguished host infection status in 100% of mice with both serum and lung as the target sample. In human subjects, we evaluated detection of the bacterial small molecules in multiple body compartments in three patient cohorts corresponding to different forms of tuberculosis. We detected at least one of the three molecules in 90%, 71%, and 40% of TB patients' sputum, cerebrospinal fluid, and lymph node samples, respectively. In paucibacillary forms of human tuberculosis, which are difficult to diagnose even with culture, detection of one or more bacterial small molecule was rapid and compared favorably to PCR-based detection. Secreted bacterial small molecules, which are detectable in serum, warrant further investigation as a means for diagnosis and therapeutic monitoring in patients with tuberculosis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    The Journal of Infectious Diseases 05/2015; DOI:10.1093/infdis/jiv312 · 5.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although small molecules shed from pathogens are widely used to diagnose infection, such tests have not been widely implemented for tuberculosis. Here we show that the recently identified compound, 1-tuberculosinyladenosine (1-TbAd), accumulates to comprise >1% of all Mycobacterium tuberculosis lipid. In vitro and in vivo, two isomers of TbAd were detected that might serve as infection markers. Using mass spectrometry and nuclear magnetic resonance, we established the structure of the previously unknown molecule, N(6)-tuberculosinyladenosine (N(6)-TbAd). Its biosynthesis involves enzymatic production of 1-TbAd by Rv3378c followed by conversion to N(6)-TbAd via the Dimroth rearrangement. Intact biosynthetic genes are observed only within M. tuberculosis complex bacteria, and TbAd was not detected among other medically important pathogens, environmental bacteria, and vaccine strains. With no substantially similar known molecules in nature, the discovery and in vivo detection of two abundant terpene nucleosides support their development as specific diagnostic markers of tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Chemistry & biology 04/2015; 22(4):516-526. DOI:10.1016/j.chembiol.2015.03.015 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD11c(HI) human decidual macrophages express several isoforms of CD1 molecules. Their expression pattern and function required investigation. CD11c(HI) macrophages were isolated from decidua. Expression of CD1 isoforms and their ability to present lipid antigens to T cells was studied. CD1a, CD1c, and CD1d were all expressed on CD11c(HI) dMϕ, a pattern differing from those previously observed. Exposure of peripheral monocytes and dendritic cells to lipid isolates from decidua led to increased surface CD1a levels only. The CD1a and CD1c on dMϕ were able to present the appropriate lipid antigens to lipid antigen-specific T cells. Finally, autoreactivity of decidual T cells to CD1a was observed. The unique pattern of expression of CD1 isoforms on CD11c(HI) dMϕ is consistent with organ-specific roles of CD1 in human T-cell responses. dMϕ are able to present lipid antigens to both peripheral and decidual T cells and are major antigen-presenting cells in human decidua. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    American journal of reproductive immunology (New York, N.Y.: 1989) 03/2015; DOI:10.1111/aji.12375 · 2.67 Impact Factor
  • Ildiko Van Rhijn, D. Branch Moody
    [Show abstract] [Hide abstract]
    ABSTRACT: For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Immunological Reviews 03/2015; 264(1). DOI:10.1111/imr.12253 · 12.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth in vitro and in vivo. The deletion mutant, ΔmbtN, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of mbtK ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The mbtK mutant showed markedly reduced iron scavenging and growth in vitro. Further, ΔmbtK was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.
    PLoS Pathogens 03/2015; 11(3):e1004792. DOI:10.1371/journal.ppat.1004792 · 8.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.
    Journal of Experimental Medicine 02/2015; 212(2). DOI:10.1084/jem.20141505 · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A central paradigm in αβ T cell-mediated immunity is the simultaneous co-recognition of antigens and antigen-presenting molecules by the αβ T cell antigen receptor (TCR). CD1a presents a broad repertoire of lipid-based antigens. We found that a prototypical autoreactive TCR bound CD1a when it was presenting a series of permissive endogenous ligands, while other lipid ligands were nonpermissive to TCR binding. The structures of two TCR-CD1a-lipid complexes showed that the TCR docked over the A' roof of CD1a in a manner that precluded direct contact with permissive ligands. Nonpermissive ligands indirectly inhibited TCR binding by disrupting the TCR-CD1a contact zone. The exclusive recognition of CD1a by the TCR represents a previously unknown mechanism whereby αβ T cells indirectly sense self antigens that are bound to an antigen-presenting molecule.
    Nature Immunology 02/2015; 16(3). DOI:10.1038/ni.3098 · 24.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During infection and autoimmune disease, activation and expansion of T cells take place. Consequently, the TCR repertoire contains information about ongoing and past diseases. Analysis and interpretation of the human TCR repertoire are hampered by its size and stochastic variation and by the diversity of Ags and Ag-presenting molecules encoded by the MHC, but are highly desirable and would greatly impact fundamental and clinical immunology. A subset of the TCR repertoire is formed by invariant T cells. Invariant T cells express interdonor-conserved TCRs and recognize a limited set of Ags, presented by nonpolymorphic Ag-presenting molecules. Discovery of the three known invariant T cell populations has been a tedious and slow process, identifying them one by one. Because conservation of the TCR α-chain of invariant T cells is much higher than the β-chain, and because the TCR α-chain V gene segment TRAV1-2 is used by two of the three known invariant TCRs, we employed next-generation sequencing of TCR α-chains that contain the TRAV1-2 gene segment to identify 16 invariant TCRs shared among many blood donors. Frequency analysis of individual clones indicates these T cells are expanded in many donors, implying an important role in human immunity. This approach extends the number of known interdonor-conserved TCRs and suggests that many more exist and that these TCR patterns can be used to systematically evaluate human Ag exposure.
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens.
    Proceedings of the National Academy of Sciences 10/2014; 111(43). DOI:10.1073/pnas.1408549111 · 9.81 Impact Factor
  • Emilie Layre, Annemieke de Jong, David Branch Moody
    [Show abstract] [Hide abstract]
    ABSTRACT: For decades immunologists thought that T cells solely recognize peptides bound to Major Histocompatibility Complex (MHC) proteins. Therefore, nearly all medical technology that seeks to measure and manipulate human T cells during immunization, infection, allergy and autoimmune diseases relies on peptide antigens. Newer insights into αβ and γδ T cell activation by CD1 or MR1 proteins greatly expand the biochemical range of T cell antigens to include lipids and non-peptidic small molecules. Moving beyond in vitro studies, the recent development of human CD1a, CD1b, CD1c and MR1 tetramers allows direct and specific enumeration of lipid-reactive and small molecule-reactive T cells, providing a new approach to study of T cell-mediated diseases.
    Current Opinion in Chemical Biology 09/2014; 23:31–38. DOI:10.1016/j.cbpa.2014.09.007 · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipids from mycobacteria can be presented to human T cells by group 1 CD1 Ag-presenting molecules (CD1a, CD1b, and CD1c). Group 1 CD1-restricted T cells are activated by lipid Ags presented by myeloid dendritic cells (DCs), after which they generate antibacterial effector functions, including IFN-γ secretion and cytolysis. Thus, mycobacterial lipids are being investigated as components of novel vaccines for mycobacterial infections. In this study we show that the mycobacterial lipid Ag C80 glucose-6-monomycolate can be delivered to human CD1b(+) DCs via targeted liposomal nanoparticles, leading to robust group 1 CD1-restricted activation of T cells. Targeting was achieved by decorating the liposomes with a high-affinity glycan ligand of sialic acid-binding Ig-like lectin (Siglec)-7, a siglec receptor expressed on DCs that mediates rapid endocytosis and transport of its cargo to lysosomes. An Ab to Siglec-7 completely blocked the binding of targeted liposomes to human monocyte-derived DCs (Mo-DCs), demonstrating their targeting specificity. Mo-DCs pulsed with targeted liposomes containing C80 glucose-6-monomycolate more potently activated a CD1b-restricted T cell line relative to Mo-DCs pulsed with free lipid Ag or antigenic liposomes without Siglec-7 ligand. These data suggest that the endocytic function of Siglec-7 can be exploited to deliver glycolipid Ags to their target cell and increase the efficiency of display to T cells.
    The Journal of Immunology 07/2014; 193(4). DOI:10.4049/jimmunol.1303278 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid-reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression.
    The Journal of Immunology 03/2014; 192(9). DOI:10.4049/jimmunol.1400158 · 5.36 Impact Factor
  • Dalam Ly, D Branch Moody
    [Show abstract] [Hide abstract]
    ABSTRACT: Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove volume, or protrude substantially from the groove. These differing modes of binding can now be connected to differing immunological functions, as individual lipids can act as stimulatory antigens, inhibitory ligands, or space-filling scaffolds. Because each type of CD1 protein folds to produce antigen-binding grooves with differing sizes and shapes, CD1a, CD1b, CD1c, CD1d, and CD1e have distinct mechanisms of capturing self-lipids and exchanging them for foreign lipids. The size discrepancy between endogeneous lipids and groove volume is most pronounced for CD1b. Recent studies show that the large CD1b cavity can simultaneously bind two self-lipids, the antigen, and its scaffold lipid, which can be exchanged for one large bacterial lipid. In this review, we will highlight recent studies showing how cells regulate lipid antigen loading and the roles CD1 groove structures have in control of the presentation of chemically diverse lipids to T cells.
    Cellular and Molecular Life Sciences CMLS 03/2014; DOI:10.1007/s00018-014-1603-6 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.
    Proceedings of the National Academy of Sciences 02/2014; 111(8). DOI:10.1073/pnas.1315883111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Siderophores are small iron-binding molecules secreted by bacteria to scavenge iron. Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, produces the siderophores mycobactin and carboxymycobactin. Complexes of the mycobacterial membrane proteins MmpS4 and MmpS5 with the transporters MmpL4 and MmpL5 are required for siderophore export and virulence in Mtb. Here we show that, surprisingly, mycobactin or carboxymycobactin did not rescue the low-iron growth defect of the export mutant but severely impaired growth. Exogenous siderophores were taken up by the export mutant, and siderophore-delivered iron was used, but the deferrated siderophores accumulated intracellularly, indicating a blockade of siderophore recycling. This hypothesis was confirmed by the observation that radiolabeled carboxymycobactin was taken up and secreted again by Mtb. Addition of iron salts to an Mtb siderophore biosynthesis mutant stimulated more growth in the presence of a limiting amount of siderophores than iron-loaded siderophores alone. Thus, recycling enables Mtb to acquire iron at lower metabolic cost because Mtb cannot use iron salts without siderophores. Exogenous siderophores were bactericidal for the export mutant in submicromolar quantities. High-resolution mass spectrometry revealed that endogenous carboxymycobactin also accumulated in the export mutant. Toxic siderophore accumulation is prevented by a drug that inhibits siderophore biosynthesis. Intracellular accumulation of siderophores was toxic despite the use of an alternative iron source such as hemin, suggesting an additional inhibitory mechanism independent of iron availability. This study indicates that targeting siderophore export/recycling would deliver a one-two punch to Mtb: restricting access to iron and causing toxic intracellular siderophore accumulation.
    Proceedings of the National Academy of Sciences 02/2014; 111(5):1945-50. DOI:10.1073/pnas.1311402111 · 9.81 Impact Factor
  • Journal of Allergy and Clinical Immunology 02/2014; 133(2):AB226. DOI:10.1016/j.jaci.2013.12.806 · 11.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non-ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.
    Nature Immunology 12/2013; DOI:10.1038/ni.2790 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human CD1a mediates foreign Ag recognition by a T cell clone, but the nature of possible TCR interactions with CD1a/lipid are unknown. After incubating CD1a with a mycobacterial lipopeptide Ag, dideoxymycobactin (DDM), we identified and measured binding to a recombinant TCR (TRAV3/ TRBV3-1, KD of ≈100 μM). Detection of ternary CD1a/lipid/TCR interactions enabled development of CD1a tetramers and CD1a multimers with carbohydrate backbones (dextramers), which specifically stained T cells using a mechanism that was dependent on the precise stereochemistry of the peptide backbone and was blocked with a soluble TCR. Furthermore, sorting of human T cells from unrelated tuberculosis patients for bright DDM-dextramer staining allowed recovery of T cells that were activated by CD1a and DDM. These studies demonstrate that the mechanism of T cell activation by lipopeptides occurs via ternary interactions of CD1a/Ag/TCR. Furthermore, these studies demonstrate the existence of lipopeptide-specific T cells in humans ex vivo.
    The Journal of Immunology 10/2013; 191(9). DOI:10.4049/jimmunol.1301660 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD1 proteins evolved to present diverse lipid Ags to T cells. In comparison with MHC proteins, CD1 proteins exhibit minimal allelic diversity as a result of nonsynonymous single nucleotide polymorphisms (SNPs). However, it is unknown if common SNPs in gene regulatory regions affect CD1 expression and function. We report surprising diversity in patterns of inducible CD1a expression on human dendritic cells (DCs), spanning the full range from undetectable to high density, a finding not seen with other CD1 isoforms. CD1a-deficient DCs failed to present mycobacterial lipopeptide to T cells but had no defects in endocytosis, cytokine secretion, or expression of costimulatory molecules after LPS treatment. We identified an SNP in the 5' untranslated region (rs366316) that was common and strongly associated with low CD1a surface expression and mRNA levels (p = 0.03 and p = 0.001, respectively). Using a CD1a promoter-luciferase system in combination with mutagenesis studies, we found that the polymorphic allele reduced luciferase expression by 44% compared with the wild-type variant (p < 0.001). Genetic regulation of lipid Ag presentation by varying expression on human DCs provides a mechanism for achieving population level differences in immune responses despite limited structural variation in CD1a proteins.
    The Journal of Immunology 07/2013; 191(4). DOI:10.4049/jimmunol.1300575 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.
    Nature 07/2013; DOI:10.1038/nature12337 · 42.35 Impact Factor

Publication Stats

4k Citations
1,130.87 Total Impact Points

Institutions

  • 2015
    • Beverly Hospital, Boston MA
      BVY, Massachusetts, United States
  • 1996–2015
    • Harvard Medical School
      • • Department of Medicine
      • • Department of Pathology
      Boston, Massachusetts, United States
  • 2008–2014
    • Brigham and Women's Hospital
      • • Division of Rheumatology, Immunology, and Allergy
      • • Department of Medicine
      Boston, Massachusetts, United States
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2011
    • University of Pittsburgh
      • Department of Infectious Diseases and Microbiology
      Pittsburgh, Pennsylvania, United States
  • 2007
    • Carleton University
      • Department of Biology
      Ottawa, Ontario, Canada
    • University of Massachusetts Boston
      Boston, Massachusetts, United States
  • 2003
    • Yeshiva University
      • Department of Microbiology & Immunology
      New York City, New York, United States
  • 2001
    • Newcastle University
      • School of Chemistry
      Newcastle-on-Tyne, England, United Kingdom
  • 1997
    • Boston University
      Boston, Massachusetts, United States