Gyorgy Szabadkai

University College London, Londinium, England, United Kingdom

Are you Gyorgy Szabadkai?

Claim your profile

Publications (56)301.43 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.
    Brain : a journal of neurology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsic and acquired chemoresistance are frequent causes of cancer eradication failure. Thus, long-term cis-diaminedichloroplatine(II) (CDDP) or cisplatin treatment is known to promote tumor cell resistance to apoptosis induction via multiple mechanisms involving gene expression modulation of oncogenes, tumor suppressors and blockade of pro-apoptotic mitochondrial membrane permeabilization. Here, we demonstrate that CDDP-resistant non-small lung cancer cells undergo profound remodeling of their endoplasmic reticulum (ER) proteome (>80 proteins identified by proteomics) and exhibit a dramatic overexpression of two protein disulfide isomerases, PDIA4 and PDIA6, without any alteration in ER-cytosol Ca(2+) fluxes. Using pharmacological and genetic inhibition, we show that inactivation of both proteins directly stimulates CDDP-induced cell death by different cellular signaling pathways. PDIA4 inactivation restores a classical mitochondrial apoptosis pathway, while knockdown of PDIA6 favors a non-canonical cell death pathway sharing some necroptosis features. Overexpression of both proteins has also been found in lung adenocarcinoma patients, suggesting a clinical importance of these proteins in chemoresistance.Cell Death and Differentiation advance online publication, 24 January 2014; doi:10.1038/cdd.2013.193.
    Cell death and differentiation 01/2014; · 8.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.
    Cell Death & Disease 01/2014; 5:e1082. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.
    Nature Communications 01/2014; 5:3936. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
    Methods in enzymology. 01/2014; 543:47-72.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.
    Cell Death & Disease 01/2014; 5:e1257. · 6.04 Impact Factor
  • Caroline M Dalton, Gyorgy Szabadkai, John Carroll
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria provide the primary source of ATP in the oocyte and early embryo and mitochondrial dysfunction and deficit of mitochondria-derived ATP has been linked to suboptimal developmental competence. We have undertaken a study of ATP in the maturing mouse oocyte using a novel recombinant FRET based probe, AT1.03. We show that AT1.03 can be successfully used to monitor cytosolic ATP levels in single live oocytes over extended time periods. We find that ATP levels undergo dynamic changes associated with specific maturational events and that oocytes display altered rates of ATP consumption at different stages of maturation. Cumulus enclosed oocytes have a higher ATP level during maturation than denuded oocytes and this can be abolished by inhibition of gap junctional communication between the oocyte and cumulus cells. Our work uses a new approach to shed light on regulation of ATP levels and ATP consumption during oocyte maturation. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 08/2013; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.
    Scientific Reports 08/2013; 3:2467. · 5.08 Impact Factor
  • Gyorgy Szabadkai, Rosario Rizzuto
    [Show abstract] [Hide abstract]
    ABSTRACT: We are currently witnessing a stream of major discoveries describing the elementary constituents of complex mitochondrial machineries that define the shape, dynamics and intracellular distribution of the organelle. On the basis of these findings the next wave of research holds the promise of unveiling the so far hidden relationships between the fascinating ultrastructural mitochondrial anatomy and its key roles in many areas of cell biology.
    Current opinion in cell biology 05/2013; · 14.15 Impact Factor
  • Source
    Gyorgy Szabadkai, Christos Chinopoulos
    Frontiers in Oncology 01/2013; 3:140.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of Myotonic Dystrophy type 1 (DM1) is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S) during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC) coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER) stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.
    Genes. 01/2013; 4(2):275-92.
  • Source
    Christos Chinopoulos, Gyorgy Szabadkai
    Frontiers in Oncology 01/2013; 3:25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signalling is currently attributed to the differential distribution of IP3R channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals that allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. Objective: To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signalling. Methods and Results: We report here that IGF-1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes and adult rat cardiac myocytes. This fast and localized response is achieved by activation of IGF-1R signalling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear IGF-1R pool connects extracellular stimulation to local activation of nuclear Ca(2+)-signalling and transcriptional up-regulation through the perinuclear hydrolysis of PIP(2), IP(3) production, nuclear Ca(2+) release and activation of the transcription factor MEF2C. Genetically engineered Ca(2+) buffers -parvalbumin- with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signalling machinery. Conclusions: These data reveal the existence of an IP(3)-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signalling in response to an extracellular ligand.
    Circulation Research 11/2012; · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signalling is currently attributed to the differential distribution of IP3R channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals that allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. Objective: To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signalling. Methods and Results: We report here that IGF-1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes and adult rat cardiac myocytes. This fast and localized response is achieved by activation of IGF-1R signalling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear IGF-1R pool connects extracellular stimulation to local activation of nuclear Ca(2+)-signalling and transcriptional up-regulation through the perinuclear hydrolysis of PIP(2), IP(3) production, nuclear Ca(2+) release and activation of the transcription factor MEF2C. Genetically engineered Ca(2+) buffers -parvalbumin- with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signalling machinery. Conclusions: These data reveal the existence of an IP(3)-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signalling in response to an extracellular ligand.
    Circulation Research 11/2012; · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p66Shc is an adaptor protein involved in cell proliferation and differentiation that undergoes phosphorylation at Ser36 in response to oxidative stimuli, consequently inducing a burst of reactive oxygen species (ROS), mitochondrial disruption and apoptosis. Its role during several pathologies suggests that p66Shc mitochondrial signalling can perpetuate a primary mitochondrial defect, thus contributing to the pathophysiology of that condition. Here, we show that in the fibroblasts of neuropathy, ataxia and retinitis pigmentosa (NARP) patients, the p66Shc phosphorylation pathway is significantly induced in response to intracellular oxidative stress related to disrupted ATP synthase activity and mitochondrial membrane hyperpolarisation. We postulate that the increased phosphorylation of p66Shc at Ser36 is partially responsible for further increasing ROS production, resulting in oxidative damage of proteins. Oxidative stress and p66Shc phosphorylation at Ser36 may be mitigated by antioxidant administration or the use of a p66Shc phosphorylation inhibitor. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
    The international journal of biochemistry & cell biology 07/2012; · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary mitochondrial dysfunction commonly leads to failure in cellular adaptation to stress. Paradoxically, however, nonsynonymous mutations of mitochondrial DNA (mtDNA) are frequently found in cancer cells and may have a causal role in the development of resistance to genotoxic stress induced by common chemotherapeutic agents, such as cis-diammine-dichloroplatinum(II) (cisplatin, CDDP). Little is known about how these mutations arise and the associated mechanisms leading to chemoresistance. Here, we show that the development of adaptive chemoresistance in the A549 non-small-cell lung cancer cell line to CDDP is associated with the hetero- to homoplasmic shift of a nonsynonymous mutation in MT-ND2, encoding the mitochondrial Complex-I subunit ND2. The mutation resulted in a 50% reduction of the NADH:ubiquinone oxidoreductase activity of the complex, which was compensated by increased biogenesis of respiratory chain complexes. The compensatory mitochondrial biogenesis was most likely mediated by the nuclear co-activators peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) and PGC-1β, both of which were significantly upregulated in the CDDP-resistant cells. Importantly, both transient and stable silencing of PGC-1β re-established the sensitivity of these cells to CDDP-induced apoptosis. Remarkably, the PGC-1β-mediated CDDP resistance was independent of the mitochondrial effects of the co-activator. Altogether, our results suggest that partial respiratory chain defects because of mtDNA mutations can lead to compensatory upregulation of nuclear transcriptional co-regulators, in turn mediating resistance to genotoxic stress.Oncogene advance online publication, 9 July 2012; doi:10.1038/onc.2012.259.
    Oncogene 07/2012; · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease.
    Mitochondrion 01/2012; 12(1):86-99. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy.
    Cell death and differentiation 10/2011; 19(4):650-60. · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In addition to the circulating (endocrine) renin-angiotensin system (RAS), local renin-angiotensin systems are now known to exist in diverse cells and tissues. Amongst these, pancreatic renin-angiotensin systems have recently been identified and may play roles in the physiological regulation of pancreatic function, as well as being implicated in the pathogenesis of pancreatic diseases including diabetes, pancreatitis and pancreatic cancer. To review and summarise current knowledge of pancreatic renin-angiotensin systems. We performed an extensive PubMed, Medline and online review of all relevant literature. Pancreatic RAS appear to play various roles in the regulation of pancreatic physiology and pathophysiology. Ang II may play a role in the development of pancreatic ductal adenocarcinoma, via stimulation of angiogenesis and prevention of chemotherapy toxicity, as well as in the initiation and propagation of acute pancreatitis (AP); whereas, RAS antagonism is capable of preventing new-onset diabetes and improving glycaemic control in diabetic patients. Current evidence for the roles of pancreatic RAS is largely based upon cell and animal models, whilst definitive evidence from human studies remains lacking. The therapeutic potential for RAS antagonism, using cheap and widely available agents, and may be untapped and such roles are worthy of active investigation in diverse pancreatic disease states.
    Alimentary Pharmacology & Therapeutics 08/2011; 34(8):840-52. · 4.55 Impact Factor

Publication Stats

2k Citations
301.43 Total Impact Points

Institutions

  • 2008–2014
    • University College London
      • • Department of Cell and Developmental Biology
      • • Department of Clinical Physiology
      Londinium, England, United Kingdom
    • Royal Veterinary College
      Londinium, England, United Kingdom
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 1996–2013
    • Semmelweis University
      • • Department of Medical Biochemistry
      • • Department of Physiology
      Budapest, Budapest fovaros, Hungary
  • 2009–2012
    • Nencki Institute of Experimental Biology
      • Department of Biochemistry
      Warsaw, Masovian Voivodeship, Poland
  • 2010
    • University of Chile
      • Facultad de Ciencias Químicas y Farmacéuticas
      Santiago, Region Metropolitana de Santiago, Chile
  • 2007
    • Institut de Cancérologie Gustave Roussy
      • Department of Radiotherapy
      Île-de-France, France
  • 2001–2007
    • University of Ferrara
      • Department of Morphology, Surgery and Experimental Medicine
      Ferrare, Emilia-Romagna, Italy