Jai-Sing Yang

China Medical University (ROC), 臺中市, Taiwan, Taiwan

Are you Jai-Sing Yang?

Claim your profile

Publications (213)476.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Twelve novel 20-sulfonylamidine derivatives (9a-9l) of camptothecin (1) were synthesized via a Cu-catalyzed three-component reaction. They showed similar or superior cytotoxicity compared with that of irinotecan (3) against A-549, DU-145, KB, and multidrug-resistant (MDR) KBvin tumor cell lines. Compound 9a demonstrated better cytotoxicity against MDR cells compared with that of 1 and 3. Mechanistically, 9a induced significant DNA damage by selectively inhibiting Topoisomerase (Topo) I and activating the ATM/Chk related DNA damage-response pathway. In xenograft models, 9a demonstrated significant activity without overt adverse effects at 5 and 10 mg/kg, comparable to 3 at 100 mg/kg. Notably, 9a at 300 mg/kg (i.p.) showed no overt toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/kg, i.p.). Intact 9a inhibited Topo I activity in a cell-free assay in a manner similar to that of 1, confirming that 9a is a new class of Topo I inhibitor. 20-Sulfonylamidine 1-derivative 9a merits development as an anticancer clinical trial candidate.
    Journal of medicinal chemistry. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This investigation clearly clarified the synthesized and antimitotic compound, 2-(3'-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38), addressing its target and precise mechanism of action. We hypothesized that HMJ-38 might sensitize apoptotic death of human oral carcinoma CAL 27 cells in vitro and inhibited xenograft tumor growth in vivo. Cell viability was assessed utilizing MTT assay. HMJ-38-treated cells represented DNA fragmentation using agrose gel electrophoresis as further evidenced using TUNEL staining. Flow cytometric analyses, immunoblotting and quantitative RT-PCR were applied for protein and gene expression. Antitumor xenograft study was employed. HMJ-38 concentration- and time-dependently reduced viability of CAL 27 cells. The effect of intrinsic molecules was signalized during HMJ-38 exposure with disruption of ΔΨm, MPT pore opening and the releases of various events from mitochondria undergoing cell apoptosis. HMJ-38 also markedly facilitated G2/M phase arrest. HMJ-38 stimulated the activation of CDK1 activity that modulated phosphorylation on Ser70 of Bcl-2-mediated mitotic arrest and apoptosis. HMJ-38 triggered intracellular Ca(2+) release and activated related pivotal hallmarks of ER stress. HMJ-38 in nude mice bearing CAL 27 tumor xenografts decreased tumor growth. Furthermore, HMJ-38 enhanced caspase-3 gene expression and protein level in xenotransplanted tumors. Early roles of mitotic arrest, unfolded protein response and mitochondria-dependent signaling contributed to apoptotic CAL 27 cell demise induced by HMJ-38. In in vivo experiments, HMJ-38 also efficaciously suppressed tumor volume in a xenotransplantation model. This finding might fully support a critical event for HMJ-38 via induction of apoptotic machinery and ER stress against human oral cancer cells.
    Biochimica et Biophysica Acta 07/2014; 1840(7):2310–20. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to explore the effect of 6-fluoro-2-(3-fluorophenyl)-4-(cyanoanilino) quinazoline (HMJ-30) on the anti-angiogenic properties and apoptosis-related mechanism of human umbilical vein endothelial cells (HUVECs). In this study, HMJ-30 dose- and time-dependently inhibited the viability of HUVECs. We also found that HMJ-30 enhanced disruption of tube-like structures and suppressed cell migration in HUVECs after vascular endothelial growth factor (VEGF) induction. HMJ-30 was also observed to inhibit vessel branching and sprouting in chicken chorioallantoic membrane (CAM). Microsprouting induced by VEGF in the rat aortic ring and blood vessel formation in a mouse Matrigel plug were individually suppressed by HMJ-30. In an in vitro study, HMJ-30 induced the apoptotic death of HUVECs as indicated by DNA fragmentation and promoted reactive oxygen species (ROS) production as determined by flow cytometric assay. In addition, extrinsic caspase signaling (caspase-8 and -3) was activated in the HMJ-30-treated HUVECs and their inhibitors were applied to assess the signal transduction. We investigated the upstream of the death receptor pathway and further observed that the levels of death receptor 5 (DR5) and phosphorylated c-Jun N-terminal kinase (JNK) signals were upregulated in HUVECs following HMJ-30 challenge, which was confirmed by a JNK-specific inhibitor (SP600125). Hence, HMJ-30-induced endothelial cell apoptosis involved the ROS/JNK-regulated DR5 pathway. In summary, HMJ-30 may provide a potential therapeutic effect for the anti-vascular targeting of angiogenesis during cancer treatment.
    Oncology reports. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pterostilbene is an effective chemopreventive agent against multiple types of cancer cells. A novel pterostilbene derivative, ANK-199, was designed and synthesized by our group. Its antitumor activity and mechanism in cisplatin-resistant CAR human oral cancer cells were investigated in this study. Our results show that ANK-199 has an extremely low toxicity in normal oral cell lines. The formation of autophagic vacuoles and acidic vesicular organelles (AVOs) was observed in the ANK-199-treated CAR cells by monodansylcadaverine (MDC) and acridine orange (AO) staining, suggesting that ANK-199 is able to induce autophagic cell death in CAR cells. Neither DNA fragmentation nor DNA condensation was observed, which means that ANK-199-induced cell death is not triggered by apoptosis. In accordance with morphological observation, 3-MA, a specific inhibitor of PI3K kinase class III, can inhibit the autophagic vesicle formation induced by ANK-199. In addition, ANK-199 is also able to enhance the protein levels of autophagic proteins, Atg complex, beclin 1, PI3K class III and LC3-II, and mRNA expression of autophagic genes Atg7, Atg12, beclin 1 and LC3-II in the ANK-199-treated CAR cells. A molecular signaling pathway induced by ANK-199 was therefore summarized. Results presented in this study show that ANK-199 may become a novel therapeutic reagent for the treatment of oral cancer in the near future (patent pending).
    International journal of oncology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TLR4, a membrane receptor that functions in complex with its accessory protein myeloid differentiation factor-2 (MD-2), is a therapeutic target for bacterial infections. Taiwanofungus camphoratus is highly valued as a medicinal mushroom for cancer, hypertension, and inflammation in traditional medicine. Zhankuic acid A (ZAA) is the major pharmacologically active compound of T. camphoratus. The mechanism of action of T. camphoratus or ZAA has not been fully elucidated. We analyzed the structure of human TLR4/MD-2 complex with ZAA by X-score and HotLig modeling approaches. Two Abs against MD-2 were used to verify the MD-2/ZAA interaction. The inflammation and survival of the mice pretreated with ZAA and injected with LPS were monitored. The modeling structure shows that ZAA binds the MD-2 hydrophobic pocket exclusively via specific molecular recognition; the contact interface is dominated by hydrophobic interactions. Binding of ZAA to MD-2 reduced Ab recognition to native MD-2, similar to the effect of LPS binding. Furthermore, ZAA significantly ameliorated LPS-induced endotoxemia and Salmonella-induced diarrhea in mice. Our results suggest that ZAA, which can compete with LPS for binding to MD-2 as a TLR4/MD-2 antagonist, may be a potential therapeutic agent for gram-negative bacterial infections.
    The Journal of Immunology 02/2014; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    Environmental Toxicology 01/2014; · 2.71 Impact Factor
  • Source
    Dataset: MNF
  • Source
    Dataset: MNF
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allyl isothiocyanate (AITC) has been found to present sources from consumed cruciferous vegetables. AITC is known to possess pharmacological and anticancer activities. The present study was designed to test the hypothesis that AITC suppressed the invasion and migration of epidermal growth factor (EGF)-stimulated HT29 cells and to elucidate the mechanisms for the antimetastatic abilities in vitro. The invasion and migration of EGF-stimulated HT29 cells were determined individually by Transwell cell invasion and wound-healing assays. Our results showed that AITC effectively inhibited both the invasive and migratory ability of HT29 cells. Furthermore, AITC downregulated the protein levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and mitogen-activated protein kinases (MAPKs) (p-JNK, p-ERK and p-p38) by western blot analysis in HT29 cells following EGF induction. Thus, the metastatic responses in AITC-treated HT29 cells after EGF stimulation were mediated by the MMP-2/-9 and MAPK signaling pathways. We also used gene expression microarrays to investigate the gene levels related to cell growth, G-protein coupled receptor, angiogenesis, cell adhesion, cell cycle and mitosis, cell migration, cytoskeleton organization, DNA damage and repair, transcription and translation, EGFR and PKB/mTOR signals. In summary, it is possible that AITC suppresses the invasion and migration of EGF-induced HT29 cells, resulting from MMP-2/-9 and MAPKs. Hence, AITC may be beneficial in the treatment of human colorectal adenocarcinoma in the future.
    Oncology Reports 11/2013; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin has potential anticancer activity and has been shown to be involved in several signaling pathways including differentiation and apoptosis. Our previous study showed that water-soluble PLGA curcumin nanoparticles (Cur-NPs) triggered apoptotic cell death through regulation of the function of MDR1 and the production of reactive oxygen species (ROS) in cisplatin-resistant human oral cancer CAR cells. In this study, we investigated the anti-proliferative effects of Cur-NPs on human osteosarcoma U2OS cells. The morphology of Cur-NPs showed spherical shape by TEM analysis. The encapsulation efficiency of curcumin in Cur-NPs prepared by single emulsion was 90.5±3.0%. Our results demonstrated that the curcumin fragments on the mass spectrum of Cur-NPs and the peaks of curcumin standard could be found on the Cur-NPs spectrum by 1H-NMR spectra analysis. Cur-NPs induced anti-proliferative effects and apoptosis in U2OS cells. Compared to the untreated U2OS cells, more detectable amount of Cur-NPs was found inside the treated U2OS cells. Cur-NPs induced DNA fragmentation and apoptotic bodies in U2OS cells. Both the activity and the expression levels of caspases-3/-7 and caspase-9 were elevated in the treated U2OS cells. Cur-NPs upregulated the protein expression levels of cleaved caspase-3/caspase-9, cytochrome c, Apaf-1 and Bad and downregulated the protein expression level of p-Akt in U2OS cells. These results suggest Cur-NPs are effective in enhancing apoptosis in human osteosarcoma cells and thus could provide potential for cancer therapeutics.
    International Journal of Oncology 11/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28:601-608, 2013.
    Environmental Toxicology 11/2013; 28(11):601-8. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Propofol is one of the most widely clinically used intravenous anesthetic, and it induces apoptosis in human and murine leukemia cell lines. Yet, whether propofol causes DNA damage and affects the mRNA expression of repair-associated genes in cancer cells remains undetermined. In the present study, we investigated the effects of propofol on DNA damage and associated mRNA gene expression in RAW264.7 cells. Comet assay and DNA gel electrophoresis were used to evaluate DNA damage in RAW264.7 cells and propofol-inhibited cell growth in vitro. The results revealed a longer DNA tail and DNA fragmentation. Real-time PCR assay was used to examine mRNA gene expression of DNA damage and DNA repair-associated genes. Following exposure to propofol for 48 h, a decrease in the mRNA expression of DNA-PK, BRCA1, MGMT and p53 was noted in the RAW264.7 cells. Results from the western blotting indicated that p53, MGMT, 14-3-3-σ, BRCA1 and MDC1 proteins were decreased while p-p53 and p-H2A.X(S140) were increased in the RAW264.7 cells following exposure to propofol. In conclusion, exposure to propofol caused DNA damage and inhibited mRNA expression and protein levels of repair-associated genes in RAW264.7 cells.
    Oncology Reports 09/2013; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel synthetic compound 6-acetyl-9-(3,4,5-trimetho-xybenzyl)-9H-pyrido[2,3-b]indole (HAC-Y6) demonstrated selective anticancer activity. In the present study, COLO 205 cells were treated with HAC-Y6 to investigate the molecular mechanisms underlying its effects. HAC-Y6 induced growth inhibition, G2/M arrest and apoptosis in COLO 205 cells with an IC50 of 0.52±0.035 µM. Annexin V/PI double staining demonstrated the presence of apoptotic cells. JC-1 staining analysis showed that HAC-Y6 decreased mitochondrial membrane potential in support of apoptosis. An immunostaining assay revealed that HAC-Y6 depolymerized microtubules. Treatment of COLO 205 cells with HAC-Y6 resulted in increased expression of BubR1 and cyclin B1 and decreased expression of aurora A, phospho-aurora A, aurora B, phospho‑aurora B and phospho-H3. HAC-Y6 treatment increased protein levels of active caspase-3, caspase-9, Endo G, AIF, Apaf-1, cytochrome c and Bax, but treatment with the compound caused reduced levels of procaspase-3, procaspase-9, Bcl-xL and Bcl-2. Overall, our results suggest that HAC-Y6 exerts anticancer effects by disrupting microtubule assembly and inducing G2/M arrest, polyploidy and apoptosis via mitochondrial pathways in COLO 205 cells.
    International Journal of Oncology 08/2013; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is a polyphenolic compound which possesses anticancer potential. It has been shown to induce cell death in a variety of cancer cells, however, its effect on CAL27‑cisplatin-resistant human oral cancer cells (CAR cells) has not been elucidated to date. The low water solubility of curcumin which leads to poor bioavailability, however, has been highlighted as a major limiting factor. In this study, we utilized water-soluble PLGA curcumin nanoparticles (Cur-NPs), and investigated the effects of Cur-NPs on CAR cells. The results showed Cur-NPs induced apoptosis in CAR cells but exhibited low cytotoxicity to normal human gingival fibroblasts (HGFs) and normal human oral keratinocytes (OKs). Cur-NPs triggered DNA concentration, fragmentation and subsequent apoptosis. Compared to untreated CAR cells, a more detectable amount of Calcein-AM accumulation was found inside the treated CAR cells. Cur-NPs suppressed the protein and mRNA expression levels of MDR1. Both the activity and the expression levels of caspase-3 and caspase-9 were elevated in the treated CAR cells. The Cur-NP-triggered apoptosis was blocked by specific inhibitors of pan-caspase (z-VAD-fmk), caspase-3 (z-DEVD-fmk), caspase-9 (z-LEHD-fmk) and antioxidant agent (N-acetylcysteine; NAC). Cur-NPs increased reactive oxygen species (ROS) production, upregulated the protein expression levels of cleaved caspase-3/caspase-9, cytochrome c, Apaf-1, AIF, Bax and downregulated the protein levels of Bcl-2. Our results suggest that Cur-NPs triggered the intrinsic apoptotic pathway through regulating the function of multiple drug resistance protein 1 (MDR1) and the production of reactive oxygen species (ROS) in CAR cells. Cur-NPs could be potentially efficacious in the treatment of cisplatin-resistant human oral cancer.
    International Journal of Oncology 08/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New 6- (or 6,7-) substituted 2-(hydroxyl substituted phenyl)quinolin-4-one derivatives were synthesized and screened for antiproliferative effects against cancer cell lines. Structure-activity relationship correlations were established and the most promising compound 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidin-1-ylquinolin-4-one (6h) exhibited strong inhibitory activity against various human cancer cell lines, particularly non-small cell lung cancer NCI-H522. Additional studies suggested a mechanism of action resembling that of the antimitotic drug vincristine. The presence of a C-ring OH group in 6h will allow this compound to be converted readily to a water soluble and physicochemically stable hydrophilic prodrug. Compound 6h is proposed as a new anticancer lead compound.
    Bioorganic & medicinal chemistry letters 07/2013; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.
    International Journal of Oncology 06/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.
    Oncology Reports 05/2013; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have demonstrated that autophagy is associated with cancer development. Thus, agents to induce autophagy could be employed in some cases for the treatment of cancer. Our results showed that tetrandrine significantly decreased the viability of SAS cells in a concentration- and time-dependent manner. Tetrandrine induced nuclear condensation, demonstrated by DAPI staining. The early events in apoptosis analysed by Annexin V/PI staining indicated that the percentage of cells staining positive for Annexin V was slightly increased in SAS cells with tetrandrine treatment but was much lower following bafilomycin A1 pre-treatment. Tetrandrine caused AVO and MDC induction in SAS cells in a concentration-dependent manner by fluorescence microscopy. Tetrandrine also caused LC-3 expression in SAS cells in a time-dependent manner. Our results show that tetrandrine treatment induced the levels of cleaved caspase-3 in a concentration- and time-dependent manner. Tetrandrine treatment induced the levels of LC-3 II, Atg-5, beclin-1, p-S6, p-ULK, p-mTOR, p-Akt (S473) and raptor. Tetrandrine decreased cell viability, but bafilomycin A1, 3-MA, chloroquine and NAC protected tetrandrine-treated SAS cells against decrease of cell viability. Atg-5, beclin-1 siRNA decreased tetrandrine-induced cleaved caspase-3 and cleaved PARP in SAS cells and protected tetrandrine-treated SAS cells against decrease in cell viability. Chloroquine, NAC and bafilomycin A1 also decreased tetrandrine-induced cleaved caspase-3 and cleaved PARP in SAS cells. Our results indicate the tetrandrine induces apoptosis and autophagy of SAS human cancer cells via caspase-dependent and LC3-I and LC3-II‑dependent pathways.
    International Journal of Oncology 05/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quinazolinone derivatives are known to possess anticancer activities on cell metastasis and cell death in different human cancer cell lines. Here, we studied the anti-metastasis activity and the underlying mechanisms of the novel quinazoline derivative MJ-56 (6-pyrrolidinyl-2-(3-bromostyryl)quinazolin-4-one). MJ-56 inhibited cell migration and invasion of HT29 human colorectal cancer cells by wound-healing and Matrigel-coated transwell assays in a concentration-dependent manner. MJ-56-treated cells resulted in the reduced expression of matrix metalloproteinase (MMP)-2, -7, -9 and -10 and the reduced enzymatic activities of MMP-2 and MMP-9. In contrast, MJ-56-treated cells enhanced the expression of the tissue inhibitors of metalloproteinases (TIMPs) TIMP-1 and TIMP-2. Further analyses showed that MJ-56 attenuated the activities of epidermal growth factor receptor (EGFR), c-Met and the downstream ERK-mediated MAPK and PI3K/AKT/mTOR signaling pathways, which led to decreased protein synthesis by dephosphorylating the translation initiation factors eIF-4B, eIF-4E, eIF-4G and S6 ribosomal protein. In addition, MJ-56 interfered with the NF-κB signaling via impairing PI3K/AKT activation and subsequently reduced the NF-κB-mediated transcription of MMPs. Taken together, the reduced expression of phosphor-EGFR and c-MET is chiefly responsible for all events of blocking metastasis. Our results suggest a potential role of MJ-56 on therapy of colorectal cancer metastasis.
    International Journal of Oncology 05/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quercetin, a principal flavanoid compound in onions, has been shown to possess a wide spectrum of pharmacological properties, including anticancer activities. Our earlier study showed that quercetin induced cytotoxic effects on SAS human oral cancer cells. In this study, we found that quercetin significantly reduced wound closure of SAS cells in culture plates after 12- and 24-h treatments. Results indicated that quercetin inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, as measured by western blotting and gelatin zymography. The results from western blotting also showed that quercetin reduced the protein levels of MMP-2, -7, -9 and -10, vascular endothelial growth factor (VEGF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, inductible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), urokinase-type plasminogen activator (uPA), phosphatidylinositide-3 kinases (PI3K), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα), IKB-α/β, phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor kinase, alpha/beta (p-IKKα/β), focal adhesion kinase (FAK), son of sevenless homolog-1 (SOS1), growth factor receptor-bound protein-2 (GRB2), mitogen-activated protein kinase kinase kinase-3 (MEKK3), MEKK7, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2), p38, p-p38, Jun proto-oncogene (c-JUN) and p-c-JUN but it did not affect Ras homolog gene family, member A (RhoA), Protein kinase C (PKC) and rat sarcoma viral oncogene homolog (RAS) in SAS cells. Confocal laser microscopy also showed that quercetin promoted the expressions of RhoA and Rho-associated, coiled-coil containing protein kinase-1 (ROCK1), but inhibited the expression of NF-κB p65 in SAS cells. It is concluded from these data that inhibition of migration and invasion of SAS cells by quercetin is associated with the down-regulation of PKC and RhoA by blocking MAPK and PI3K/AKT signaling pathways and NF-κB and uPA, resulting in inhibition of MMP-2 and MMP-9 signaling.
    Anticancer research 05/2013; 33(5):1941-50. · 1.71 Impact Factor

Publication Stats

2k Citations
476.77 Total Impact Points

Institutions

  • 2006–2014
    • China Medical University (ROC)
      臺中市, Taiwan, Taiwan
    • Fooyin University
      Kao-hsiung-shih, Kaohsiung, Taiwan
  • 2004–2014
    • China Medical University Hospital
      • Department of Radiology
      臺中市, Taiwan, Taiwan
  • 2011–2013
    • National Cheng Kung University
      • Department of Chemistry
      Tainan, Taiwan, Taiwan
    • I-Shou University
      Kao-hsiung-shih, Kaohsiung, Taiwan
    • Fu Jen Catholic University
      T’ai-pei, Taipei, Taiwan
    • Asia University
      • Department of Biotechnology
      臺中市, Taiwan, Taiwan
    • Far Eastern Memorial Hospital
      T’ai-pei, Taipei, Taiwan
    • Providence University
      臺中市, Taiwan, Taiwan
  • 2010–2013
    • National Chung Hsing University
      • Department of Life Sciences
      Taichung, Taiwan, Taiwan
    • Changhua Christian Hospital
      Chang-hua Pei-pu, Taiwan, Taiwan
  • 2012
    • Chung Shan Medical University
      • Institute of Medicine
      Taichung, Taiwan, Taiwan
  • 2007–2012
    • Feng-Yuan Hospital
      T’ai-chung, Taiwan, Taiwan
  • 2006–2012
    • Cheng Hsin General Hospital
      T’ai-pei, Taipei, Taiwan
  • 2008–2010
    • Buddhist Tzu Chi General Hospital
      T’ai-pei, Taipei, Taiwan
    • Central Taiwan University of Science and Technology
      臺中市, Taiwan, Taiwan
    • Jen-Teh Junior College Of Medicine, Nursing And Management
      Miao-li-chieh, Taiwan, Taiwan