Weifei Zhu

University of Texas Southwestern Medical Center, Dallas, Texas, United States

Are you Weifei Zhu?

Claim your profile

Publications (11)89.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevations in C-reactive protein (CRP) are associated with increased cardiovascular disease risk and endothelial dysfunction. CRP antagonizes endothelial nitric oxide synthase (eNOS) through processes mediated by the IgG receptor Fcγ receptor IIB (FcγRIIB), its immunoreceptor tyrosine-based inhibitory motif, and SH2 domain-containing inositol 5'-phosphatase 1. In mice, CRP actions on eNOS blunt carotid artery re-endothelialization. How CRP activates FcγRIIB in endothelium is not known. We determined the role of Fcγ receptor I (FcγRI) and the basis for coupling of FcγRI to FcγRIIB in endothelium. In cultured endothelial cells, FcγRI-blocking antibodies prevented CRP antagonism of eNOS, and CRP activated Src via FcγRI. CRP-induced increases in FcγRIIB immunoreceptor tyrosine-based inhibitory motif phosphorylation and SH2 domain-containing inositol 5'-phosphatase 1 activation were Src-dependent, and Src inhibition prevented eNOS antagonism by CRP. Similar processes mediated eNOS antagonism by aggregated IgG used to mimic immune complex. Carotid artery re-endothelialization was evaluated in offspring from crosses of CRP transgenic mice (TG-CRP) with either mice lacking the γ subunit of FcγRI (FcRγ(-/-)) or FcγRIIB(-/-) mice. Whereas re-endothelialization was impaired in TG-CRP vs wild-type, it was normal in both FcRγ(-/-); TG-CRP and FcγRIIB(-/-); TG-CRP mice. CRP antagonism of eNOS is mediated by the coupling of FcγRI to FcγRIIB by Src kinase and resulting activation of SH2 domain-containing inositol 5'-phosphatase 1, and consistent with this mechanism, both FcγRI and FcγRIIB are required for CRP to blunt endothelial repair in vivo. Similar mechanisms underlie eNOS antagonism by immune complex. FcγRI and FcγRIIB may be novel therapeutic targets for preventing endothelial dysfunction in inflammatory or immune complex-mediated conditions.
    Circulation Research 09/2011; 109(10):1132-40. DOI:10.1161/CIRCRESAHA.111.254573 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circulating levels of high-density lipoprotein (HDL) cholesterol are inversely related to the risk of cardiovascular disease, and HDL and the HDL receptor scavenger receptor class B type I (SR-BI) initiate signaling in endothelium through src that promotes endothelial NO synthase activity and cell migration. Such signaling requires the C-terminal PDZ-interacting domain of SR-BI. Here we show that the PDZ domain-containing protein PDZK1 is expressed in endothelium and required for HDL activation of endothelial NO synthase and cell migration; in contrast, endothelial cell responses to other stimuli, including vascular endothelial growth factor, are PDZK1-independent. Coimmunoprecipitation experiments reveal that Src interacts with SR-BI, and this process is PDZK1-independent. PDZK1 also does not regulate SR-BI abundance or plasma membrane localization in endothelium or HDL binding or cholesterol efflux. Alternatively, PDZK1 is required for HDL/SR-BI to induce Src phosphorylation. Paralleling the in vitro findings, carotid artery reendothelialization following perivascular electric injury is absent in PDZK1-/- mice, and this phenotype persists in PDZK1-/- mice with genetic reconstitution of PDZK1 expression in liver, where PDZK1 modifies SR-BI abundance. Thus, PDZK1 is uniquely required for HDL/SR-BI signaling in endothelium, and through these mechanisms, it is critically involved in the maintenance of endothelial monolayer integrity.
    Circulation Research 03/2008; 102(4):480-7. DOI:10.1161/CIRCRESAHA.107.159079 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thiol oxidative stress leads to macrophage dysfunction and cell injury, and has been implicated in the development of atherosclerotic lesions. We investigated if strengthening the glutathione-dependent antioxidant system in macrophages by overexpressing glutathione reductase (GR) decreases the severity of atherosclerosis. Bone marrow cells infected with retroviral vectors expressing either enhanced green fluorescent protein (EGFP) or an EGFP-fusion protein of cytosolic GR (GR(cyto)-EGFP) or mitochondrial GR (GR(mito)-EGFP) were transplanted into low-density lipoprotein receptor-deficient mice. Five weeks after bone marrow transplantation, animals were challenged with a Western diet for 10 weeks. No differences in either plasma cholesterol and triglyceride levels or peritoneal macrophage content were observed. However, mice reconstituted with either GR(cyto)-EGFP or GR(mito)-EGFP-expressing bone marrow had lesion areas (P<0.009) that were 32% smaller than recipients of EGFP-expressing bone marrow. In cultured macrophages, adenovirus-mediated overexpression of GR(cyto)-EGFP or GR(mito)-EGFP protected cells from mitochondrial hyperpolarization induced by oxidized low-density lipoprotein. This study provides direct evidence that the glutathione-dependent antioxidant system in macrophages plays a critical role in atherogenesis, and suggests that thiol oxidative stress-induced mitochondrial dysfunction contributes to macrophage injury in atherosclerotic lesions.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2007; 27(6):1375-82. DOI:10.1161/ATVBAHA.107.142109 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: C-reactive protein (CRP) is an acute-phase reactant that is positively associated with cardiovascular disease risk and endothelial dysfunction. In cell culture, CRP decreases the expression of endothelial NO synthase (eNOS), which regulates diverse endothelial cell (EC) functions including migration. To determine whether CRP alters EC gene expression and phenotype in vivo, we studied CF1 transgenic mice expressing rabbit CRP (CF1-CRP) regulated by the phosphoenolpyruvate carboxykinase promoter such that levels could be altered by changing carbohydrate intake. Compared with CF1 controls with CRP of <1 microg/mL, carotid artery reendothelialization after perivascular electric injury was blunted in CF1-CRP mice, with CRP levels as low as 9 microg/mL. eNOS mRNA and enzyme abundance in carotid arteries was also blunted by CRP at 9 microg/mL in vivo, and ex vivo studies of isolated arteries showed that this occurs via direct action on the endothelium. The impaired reendothelialization with CRP was mimicked by NOS antagonism in CF1 mice; conversely, in cultured ECs CRP attenuation of migration was prevented by exogenous NO. Studies of EC transfected with human eNOS 5' flanking sequence fused to luciferase indicated that CRP decreases eNOS gene transcription. Both mutagenesis and electrophoretic mobility shift assays further revealed that CRP-responsive elements reside within the first 79 bp of the eNOS promoter. Thus, CRP downregulates eNOS and attenuates reendothelialization in vivo in mice, and this action of CRP on eNOS is mediated at the level of gene transcription.
    Circulation Research 05/2007; 100(10):1452-9. DOI:10.1161/01.RES.0000267745.03488.47 · 11.09 Impact Factor
  • Weifei Zhu, Eric J Smart
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary free fatty acids have been reported to have various effects on the endothelium including the generation of nitric oxide. The goal of the current study was to determine the mechanism whereby free fatty acid causes an increase in nitric oxide synthesis. The specific hypothesis tested was that free fatty acid association with CD36, a class B scavenger receptor, induces the activation of endothelial nitric-oxide synthase (eNOS). A human microvascular endothelial cell line and a transfected Chinese hamster ovary cell system were used to determine which free fatty acids stimulate eNOS. Surprisingly, only myristic acid, and to a lesser extent palmitic acid, stimulated eNOS. The stimulation of eNOS was dose- and time-dependent. Competition experiments with other free fatty acids and with a CD36-blocking antibody demonstrated that the effects of myristic acid on eNOS required association with CD36. Further mechanistic studies demonstrated that the effects of myristic acid on eNOS function were not dependent on PI 3-kinase, Akt kinase, or calcium. Pharmacological studies and dominant negative constructs were used to demonstrate that myristic acid/CD36 stimulation of eNOS activity was dependent on the activation of AMP kinase. These data demonstrate an unexpected link among myristic acid, CD36, AMP kinase, and eNOS activity.
    Journal of Biological Chemistry 09/2005; 280(33):29543-50. DOI:10.1074/jbc.M501238200 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The controversy surrounding hormone replacement therapy has induced fear in patients and left many researchers with the impression that estrogen produces negative effects on cardiovascular function. The aim of this review is to summarize recent findings illustrating that estrogen also has positive effects even if estrogen replacement therapy is not a cure-all. Studies have unveiled new aspects of estrogen action in the cardiovascular system; however, clinical trials have not demonstrated a protective effect of the most widely used modalities of hormone replacement therapy against cardiovascular disease. New information has emerged showing that estrogen has both beneficial and detrimental effects. Further mechanistic studies and use of well defined forms of estrogens and selective estrogen receptor modulators will continue to provide novel mechanistic information that will likely lead to the development of new avenues for therapeutic interventions. Estrogens, like other steroid hormones, are potent actors in the cardiovascular system. Since half the population have high levels of estrogen most of their lives it is plain that estrogen has a variety of beneficial physiologic functions. Clinical studies, however, have demonstrated that a specific formulation of a combination of potent estrogens and metabolites is not a magic bullet, but induces both positive and negative impacts on different organ systems. More research into the mechanistic actions of estrogens in specific pathways in individual cell types is necessary to determine appropriate therapeutic interventions to replace the loss of positive effects of estrogens while minimizing the negative effects in postmenopausal women.
    Current Opinion in Lipidology 11/2004; 15(5):589-93. DOI:10.1097/00041433-200410000-00014 · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endothelium is a dynamic organ that secretes several biologically active substances and plays a major functional role in the health of an organism in both physiological and pathological conditions. For instance, the endothelium is involved in control of the exchange of plasma and tissue biomolecules, regulation of vessel tone, inflammation, lipid metabolism, vessel growth and remodeling, and modulation of coagulation and fibrinolysis. The endothelium generates nitric oxide, which is a key regulator of vasodilation and plays important roles in preventing, or in some cases promoting, numerous cardiovascular diseases. Several recent studies have examined the interplay between lipids and nitric oxide generation, especially in relation to atherosclerosis. The endothelium is continuously exposed to circulating lipids in the form of lipoproteins and protein carriers that may have a direct impact on nitric oxide synthesis and function. The purpose of this review is to illustrate some of the recent findings that link lipids (plasma and cellular) to nitric oxide generation (see Fig. 1).
    AJP Endocrinology and Metabolism 10/2004; 287(3):E386-9. DOI:10.1152/ajpendo.00106.2004 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases remain the leading cause of death in the United States. Two factors associated with a decreased risk of developing cardiovascular disease are elevated HDL levels and sex - specifically, a decreased risk is found in premenopausal women. HDL and estrogen stimulate eNOS and the production of nitric oxide, which has numerous protective effects in the vascular system including vasodilation, antiadhesion, and anti-inflammatory effects. We tested the hypothesis that HDL binds to its receptor, scavenger receptor class B type I (SR-BI), and delivers estrogen to eNOS, thereby stimulating the enzyme. HDL isolated from women stimulated eNOS, whereas HDL isolated from men had minimal activity. Studies with ovariectomized and ovariectomized/estrogen replacement mouse models demonstrated that HDL-associated estradiol stimulation of eNOS is SR-BI dependent. Furthermore, female HDL, but not male HDL, promoted the relaxation of muscle strips isolated from C57BL/6 mice but not SR-BI null mice. Finally, HDL isolated from premenopausal women or postmenopausal women receiving estradiol replacement therapy stimulated eNOS, whereas HDL isolated from postmenopausal women did not stimulate eNOS. We conclude that HDL-associated estrodial is capable of the stimulating eNOS. These studies establish a new paradigm for examining the cardiovascular effects of HDL and estrogen.
    Journal of Clinical Investigation 06/2003; 111(10):1579-87. DOI:10.1172/JCI16777 · 13.77 Impact Factor
  • Weifei Zhu, Eric J Smart
    [Show abstract] [Hide abstract]
    ABSTRACT: Estradiol has numerous physiological and pathophysiological effects on the cardiovascular system, and the ongoing controversy surrounding estrogen replacement therapy clearly illustrates the importance of understanding the molecular mechanisms of estrogen action. Many recent mechanistic studies have focused on the ability of estradiol to stimulate endothelial nitric oxide synthase (eNOS) and the subsequent generation of nitric oxide (NO). NO is centrally involved in many processes such as mitogenesis, cell adhesion, thrombosis, atherosclerosis and hypertension. Consequently, elucidating the mechanisms whereby estradiol influences NO production will directly impact on our understanding of the advantages and disadvantages of estrogen replacement therapy. An exciting aspect of this emerging area of study is that the estrogen, NO and caveolae research fields have merged to identify a novel and clinically relevant molecular process. The goal of this review is to highlight the recent findings in this area and to point out areas of controversy and areas where more studies are needed.
    Trends in Endocrinology and Metabolism 05/2003; 14(3):114-7. DOI:10.1016/S1043-2760(03)00027-4 · 8.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protease inhibitors decrease the viral load in HIV patients, however the patients develop hypertriglyceridemia, hypercholesterolemia, and atherosclerosis. It has been assumed that protease inhibitor-dependent increases in atherosclerosis are secondary to the dyslipidemia. Incubation of THP-1 cells or human PBMCs with protease inhibitors caused upregulation of CD36 and the accumulation of cholesteryl esters. The use of CD36-blocking antibodies, a CD36 morpholino, and monocytes isolated from CD36 null mice demonstrated that protease inhibitor-induced increases in cholesteryl esters were dependent on CD36 upregulation. These data led to the hypothesis that protease inhibitors induce foam cell formation and consequently atherosclerosis by upregulating CD36 and cholesteryl ester accumulation independent of dyslipidemia. Studies with LDL receptor null mice demonstrated that low doses of protease inhibitors induce an increase in the level of CD36 and cholesteryl ester in peritoneal macrophages and the development of atherosclerosis without altering plasma lipids. Furthermore, the lack of CD36 protected the animals from protease inhibitor-induced atherosclerosis. Finally, ritonavir increased PPAR-gamma and CD36 mRNA levels in a PKC- and PPAR-gamma-dependent manner. We conclude that protease inhibitors contribute to the formation of atherosclerosis by promoting the upregulation of CD36 and the subsequent accumulation of sterol in macrophages.
    Journal of Clinical Investigation 03/2003; 111(3):389-97. DOI:10.1172/JCI16261 · 13.77 Impact Factor