Cynthia Hawkins

SickKids, Toronto, Ontario, Canada

Are you Cynthia Hawkins?

Claim your profile

Publications (175)1223.63 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected almost exclusively in malignant tumors (p = 0.001). ALT was highly enriched in primitive neuroectodermal tumors (12 %), choroid plexus carcinomas (23 %) and high-grade gliomas (22 %). Furthermore, in contrast to adult gliomas, pediatric low grade gliomas which progressed to high-grade tumors did not exhibit the ALT phenotype. Somatic but not germline TP53 mutations were highly associated with ALT (p = 1.01 × 10−8). Of the other alterations examined, only ATRX point mutations and reduced expression were associated with the ALT phenotype (p = 0.0005). Interestingly, ALT attenuated the poor outcome conferred by TP53 mutations in specific pediatric brain tumors. Due to very poor prognosis, one year overall survival was quantified in malignant gliomas, while in children with choroid plexus carcinoma, five year overall survival was investigated. For children with TP53 mutant malignant gliomas, one year overall survival was 63 ± 12 and 23 ± 10 % for ALT positive and negative tumors, respectively (p = 0.03), while for children with TP53 mutant choroid plexus carcinomas, 5 years overall survival was 67 ± 19 and 27 ± 13 % for ALT positive and negative tumors, respectively (p = 0.07). These observations suggest that the presence of ALT is limited to a specific group of childhood brain cancers which harbor somatic TP53 mutations and may influence the outcome of these patients. Analysis of ALT may contribute to risk stratification and targeted therapies to improve outcome for these children.
    Acta Neuropathologica 10/2015; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma comprises four distinct molecular variants with distinct genetics, transcriptomes, and outcomes. Subgroup affiliation has been previously shown to remain stable at the time of recurrence, which likely reflects their distinct cells of origin. However, a therapeutically relevant question that remains unanswered is subgroup stability in the metastatic compartment. We assembled a cohort of 12-paired primary-metastatic tumors collected in the MAGIC consortium, and established their molecular subgroup affiliation by performing integrative gene expression and DNA methylation analysis. Frozen tissues were collected and profiled using Affymetrix gene expression arrays and Illumina methylation arrays. Class prediction and hierarchical clustering were performed using existing published datasets. Our molecular analysis, using consensus integrative genomic data, establishes the unequivocal maintenance of molecular subgroup affiliation in metastatic medulloblastoma. We further validated these findings by interrogating a non-overlapping cohort of 19 pairs of primary-metastatic tumors from the Burdenko Neurosurgical Institute using an orthogonal technique of immunohistochemical staining. This investigation represents the largest reported primary-metastatic paired cohort profiled to date and provides a unique opportunity to evaluate subgroup-specific molecular aberrations within the metastatic compartment. Our findings further support the hypothesis that medulloblastoma subgroups arise from distinct cells of origin, which are carried forward from ontogeny to oncology.
    Acta Neuropathologica 03/2015; 129(3):449-57. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The advent of integrated genomics has fundamentally changed our understanding of medulloblastoma. Although survival differences exist among the 4 principal subgroups, this has yet to be elucidated in a North American cohort of irradiated patients. Ninety-two consecutive patients between the ages of 3 and 17 treated with surgery, craniospinal irradiation, and chemotherapy were identified at the Hospital for Sick Children. Molecular subgrouping was performed using nanoString. Two treatment periods were identified: prior to 2006 as per the protocols of the Children's Oncology Group, and after 2006 per the St Jude Medulloblastoma 03 protocol. Five-year progression-free survival (PFS) over the entire cohort was 0.801 (95% CI: 0.692-0.875) with no significant difference between treatment protocols. Strikingly, we found that Group 4 patients had excellent 5-year PFS of 0.959 (95% CI: 0.744-0.994) for average risk and 0.887 (95% CI: 0.727-0.956) across all Group 4 patients. Group 3 patients had 5-year PFS of 0.733 (95% CI: 0.436-0.891). Sonic hedgehog patients did poorly across both treatment protocols, with 5-year PFS of 0.613 (95% CI: 0.333-0.804), likely owing to a high proportion of TP53 mutated patients in this age group. In a cohort of irradiated patients over 3 years of age, PFS for Group 4 patients was significantly improved compared with initial reports. The impact of subgroup affiliation in these children needs to be assessed in large prospectively treated cooperative protocols to determine if more than just WNT patients can be safely selected for de-escalation of therapy. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Neuro-oncology. 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Limb Girdle Muscular Dystrophy (LGMD) is a heterogeneous group of genetic disorders leading to progressive muscle degeneration and often associated with cardiac complications. We present two adult siblings with childhood-onset of weakness progressing to a severe quadriparesis with the additional features of triangular tongues and biventricular cardiac dysfunction. Whole exome sequencing identified compound heterozygous missense mutations that are predicted to be pathogenic in LIMS2. Biopsy of skeletal muscle demonstrated disrupted immunostaining of LIMS2. This is the first report of mutations in LIMS2 and resulting disruption of the ILK-LIMS-Parvin complex associated with LGMD. This article is protected by copyright. All rights reserved.
    Clinical Genetics 01/2015; · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cure rate for childhood intracranial ependymoma is approximately 70% in the setting of a gross total resection followed by radiation, but management remains challenging in patients with residual disease. Therefore, robust biomarkers are needed to guide the development of new targeted therapy. The authors evaluated the expression of several biomarkers in pediatric intracranial ependymoma and observed that the expression of enhancer of zeste homolog 2 (EZH2), a polycomb complex protein involved in epigenetic regulation of gene expression, was independently associated with poor survival. Tissue microarray immunostaining was performed on 180 ependymoma samples from 12 of 16 Canadian pediatric centers. Expression levels of EZH2, Ki-67, B lymphoma Moloney-murine leukemia virus insertion region 1 homolog, tumor protein 16 (P16), Y-box binding protein 1, phosphorylated protein kinase B (pAKT), and epidermal growth factor receptor were evaluated. Cox regression analyses were performed, and the Kaplan-Meier method was used to construct survival curves. EZH2 expressed in 16% of tumors was associated with inferior 5-year overall survival. Ki-67 and pAKT levels were associated with a poor outcome in patients with posterior fossa ependymoma, and the absence of P16 was associated with a poor outcome in patients with supratentorial ependymoma. Multivariate analysis revealed that younger age and EZH2 expression (95% confidence interval, 1.1-36.0) were independent markers of a poor prognosis. EZH2 is a novel, independent marker of a poor prognosis in patients with ependymoma, especially in those who have tumors located in the posterior fossa. EZH2, pAKT, and P16 are potential therapeutic targets, particularly for patients who have tumors in which standard gross total resection plus fractionated radiotherapy is not feasible. Cancer 2015. © 2015 American Cancer Society. © 2015 American Cancer Society.
    Cancer 01/2015; · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%¿±¿8.7%, respectively (p¿<¿0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%¿±¿2% vs. 57.4%¿±¿1.8% (p¿<¿0.01)). In contrast, ß-catenin mutation sensitized TP53 mutant cells to radiation (p¿<¿0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%¿±¿1.5% in lithium treated cells vs. 56.6¿±¿3% (p¿<¿0.01)) accompanied by increased number of ¿H2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%¿±¿8% for lithium treated cells vs. 27%¿±¿3% for untreated controls (p¿=¿0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
    Acta neuropathologica communications. 12/2014; 2(1):3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECT While medulloblastoma was initially thought to comprise a single homogeneous entity, it is now accepted that it in fact comprises 4 discrete subgroups, each with its own distinct demographics, clinical presentation, transcriptomics, genetics, and outcome. Hydrocephalus is a common complication of medulloblastoma and not infrequently requires CSF diversion. The authors report the incidence of CSF diversion surgery in each of the subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). METHODS The medical and imaging records for patients who underwent surgery for medulloblastoma at The Hospital for Sick Children were retrospectively reviewed. The primary outcome was the requirement for CSF diversion surgery either before or within 60 days of tumor resection. The modified Canadian Preoperative Prediction Rule for Hydrocephalus (mCPPRH) was compared among subgroups. RESULTS Of 143 medulloblastoma patients, treated from 1991 to 2013, sufficient data were available for 130 patients (15 with Wnt, 30 with Shh, 30 with Group 3, and 55 with Group 4 medulloblastomas). Of these, 28 patients (22%) ultimately underwent CSF diversion surgery: 0% with Wnt, 29% with Shh, 29% with Group 3, and 43% with Group 4 tumors. Patients in the Wnt subgroup had a lower incidence of CSF diversion than all other patients combined (p = 0.04). Wnt patients had a lower mCPPRH score (lower risk of CSF diversion, p = 0.045), were older, had smaller ventricles at diagnosis, and had no leptomeningeal metastases. CONCLUSIONS The overall rate of CSF diversion surgery for Shh, Group 3, and Group 4 medulloblastomas is around 30%, but no patients in the present series with a Wnt medulloblastoma required shunting. The low incidence of hydrocephalus in patients with Wnt medulloblastoma likely reflects both host factors (age) and disease factors (lack of metastases). The absence of hydrocephalus in patients with Wnt medulloblastomas likely contributes to their excellent rate of survival and may also contribute to a higher quality of life than for patients in other subgroups.
    Journal of Neurosurgery Pediatrics 12/2014; · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gross total resection (GTR) of intracranial ependymoma is an accepted goal. More controversial is radiotherapy deferral. This study reports on children treated with gross total resection who did not receive upfront adjuvant radiotherapy.
    Child s Nervous System 11/2014; · 1.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To investigate molecular alterations in choroid plexus tumors (CPTs) using a genome-wide high-throughput approach, in order to identify diagnostic and prognostic signatures that will refine tumor stratification and guide therapeutic options. Experimental Design: One hundred CPTs were obtained from a multi-institutional database. Copy number (CN), DNA methylation and gene expression signatures were assessed for 74, 36 and 40 samples, respectively. Molecular subgroups were correlated with clinical parameters and outcomes. Results: Unique molecular signatures distinguished choroid plexus carcinomas (CPCs) from choroid plexus papillomas (CPPs) and atypical choroid plexus papillomas (aCPPs). No significantly distinct molecular alterations between CPPs and aCPPs were observed. Allele-specific CN analysis revealed two novel subgroups: hypodiploid and hyperdiploid CPCs. Hyperdiploid CPCs exhibited recurrent acquired uniparental disomy (aUPD) events. We observed 60% of CPCs harbored TP53 mutations, and we identified a high-risk group of CPC patients carrying 2 mutant copies. These patients exhibited worse 5-year event-free (EFS) and overall survival (OS) compared to patients with CPC carrying 1 mutant copy (OS: 14.3%, 95% CI 0.71%-46.5% versus 66.7%, 28.2%-87.8%, respectively, p=0.04; EFS: 0% versus 44.4%, 13.6%-71.9%, respectively, p=0.03). CPPs and aCPPs exhibited favorable survival. Discussion: Our data demonstrates that distinct molecular signatures distinguish CPCs from CPPs and aCPPs; however molecular similarities among the papillomas suggest these two histological subgroups are indeed a single entity. A greater number of copies of mutated TP53 was significantly associated to increased tumor aggressiveness and a worse survival outcome in CPCs. Collectively, these findings will facilitate stratified approaches to the clinical management of CPTs.
    Clinical Cancer Research 10/2014; · 8.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG). We retrospectively identified patients with sHGG from a population-based cohort of 886 patients with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and outcome data of genetically distinct subgroups were obtained. sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high frequency of nonsilent somatic mutations compared with patients with primary pediatric high-grade glioma (HGG; median, 25 mutations per exome; P = .0042). Alterations in chromatin-modifying genes and telomere-maintenance pathways were commonly observed, whereas no sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80% of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distinguished sHGG from primary HGG (P = .0023), whereas BRAF and CDKN2A alterations were less commonly observed in PLGG that did not transform (P < .001 and P < .001 respectively). PLGGs with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65 years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years], respectively; P = .0389). Furthermore, 5-year overall survival was 75% ± 15% and 29% ± 12% for children with BRAF mutant and wild-type tumors, respectively (P = .024). BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG. The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG. © 2015 by American Society of Clinical Oncology.
    SNO 2014; 09/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytic inclusions (AIs) have been identified on histologic specimens of patients with early onset seizures, and the proteomic contents have been described. The aim of this study was to compare the clinical, electroencephalography (EEG), magnetoencephalography (MEG), magnetic resonance imaging (MRI), and surgical outcomes of AIs relative to focal cortical dysplasia (FCD).
    Epilepsia 08/2014; · 4.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors.
    Cancer Discovery 08/2014; 4(10). · 15.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 ± 11 vs 64 ± 18 %; p = 0.03) and overall survival (58 ± 12 vs 83 ± 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.
    Acta Neuropathologica 08/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric low grade gliomas (PLGG) have heterogeneous progression pattern throughout childhood. Data are lacking regarding the impact of puberty and pubertal hormones on tumor progression and survival.
    ISPNO 2014, Singapore; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumour-related death in children. In the majority of cases diagnosis is based on clinical and MRI findings, resulting in the scarcity of pre-treatment specimens available to study. Our group has developed an autopsy-based protocol to investigate the histologic and biologic spectrum of DIPG. This has also allowed us to investigate the terminal pattern of disease and gain a better understanding of what challenges we are facing in treating DIPG. Here, we review 72 DIPG cases with well documented clinical history and molecular data and describe the pathological features of this disease in relation to clinical and genetic features. Fifty-three of the samples were autopsy material (7 pre-treatment) and 19 were pre-treatment biopsy/surgical specimens. Upon histological review, 62 patients had high-grade astrocytomas (18 WHO grade III and 44 WHO grade IV patients), 8 had WHO grade II astrocytomas, and 2 had features of primitive neuroectodermal tumour (PNET). K27M-H3 mutations were exclusively found in tumours with WHO grade II–IV astrocytoma histology. K27M-H3.1 and ACVR1 mutations as well as ALT phenotype were only found in WHO grade III–IV astrocytomas, while PIK3CA mutations and PDGFRA gains/amplifications were found in WHO grade II–IV astrocytomas. Approximately 1/3 of DIPG patients had leptomeningeal spread of their tumour. Further, diffuse invasion of the brainstem, spinal cord and thalamus was common with some cases showing spread as distant as the frontal lobes. These findings suggest that focal radiation may be inadequate for some of these patients. Importantly, we show that clinically classic DIPGs represent a diverse histologic spectrum, including multiple cases which would fit WHO criteria of grade II astrocytoma which nevertheless behave clinically as high-grade astrocytomas and harbour the histone K27M-H3.3 mutation. This suggests that the current WHO astrocytoma grading scheme may not appropriately predict outcome for paediatric brainstem gliomas.
    Acta Neuropathologica 07/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are a deadly group of childhood and adult cancers associated with high relapse rate following current therapies. Limitless self-renewal is a hallmark of cancer recurrence and is controlled by telomerase activation and telomere maintenance. We have recently uncovered THOR (TERT Hypermethylated Oncological Region) which is paradoxically hypermethylated in gliomas with telomerase activation. In order to further explore the biological impact of THOR hypermethylation on self renewal and telomere maintenance of gliomas we undertook a stepwise approach.
    Neuro-oncology. 07/2014; 16 Suppl 3:iii30.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric brain tumor with no effective therapy and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and choosing therapies based on assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic make-up of this brain cancer with nearly 80% harboring a K27M-H3.3 or K27M-H3.1 mutation. However, DIPGs are still thought of as one disease with limited understanding of the genetic drivers of these tumors. This data is critical for the development of better therapies for these children.
    Neuro-Oncology 07/2014; 16 Suppl 3:iii26-iii27. · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Major discoveries in the biology of nervous system tumors have raised the question of how non-histological data such as molecular information can be incorporated into the next World Health Organization (WHO) classification of central nervous system tumors. To address this question, a meeting of neuropathologists with expertise in molecular diagnosis was held in Haarlem, The Netherlands, under the sponsorship of the International Society for Neuropathology (ISN). Prior to the meeting, participants solicited input from clinical colleagues in diverse neuro-oncological specialties. The present “white paper” catalogues the recommendations of the meeting, at which a consensus was reached that incorporation of molecular information into the next WHO classification should follow a set of provided “ISN-Haarlem” guidelines. Salient recommendations include that: 1) diagnostic entities should be defined as narrowly as possible to optimize interobserver reproducibility, clinicopathological predictions and therapeutic planning; 2) diagnoses should be “layered” with histologic classification, WHO grade, and molecular information listed below an “integrated diagnosis”; 3) determinations should be made for each tumor entity as to whether molecular information is required, suggested or not needed for its definition; 4) some pediatric entities should be separated from their adult counterparts; 5) input for guiding decisions regarding tumor classification should be solicited from experts in complementary disciplines of neuro-oncology and 6) entity-specific molecular testing and reporting formats should be followed in diagnostic reports. It is hoped that these guidelines will facilitate the forthcoming update of the 4th Edition of the WHO classification of central nervous system tumors.
    Brain Pathology 07/2014; · 4.35 Impact Factor
  • ISPNO 2014, SINGAPORE; 06/2014

Publication Stats

8k Citations
1,223.63 Total Impact Points

Institutions

  • 2003–2015
    • SickKids
      • • Arthur and Sonia Labatt Brain Tumour Research Centre (BTRC)
      • • Division of Neurosurgery
      • • Division of Pathology
      • • Division of Neurology
      • • Division of Hematology/Oncology
      Toronto, Ontario, Canada
  • 2004–2014
    • University of Toronto
      • • Department of Paediatrics
      • • Hospital for Sick Children
      Toronto, Ontario, Canada
  • 2012
    • McGill University
      • Department of Human Genetics
      Montréal, Quebec, Canada
  • 2011
    • Toronto Western Hospital
      Toronto, Ontario, Canada
  • 2009
    • McMaster University
      • Division of Hematology/Oncology
      Hamilton, Ontario, Canada
  • 2008
    • University of Alberta
      • Department of Pediatrics
      Edmonton, Alberta, Canada
    • Taipei Veterans General Hospital
      • General Neurosurgery Division
      T’ai-pei, Taipei, Taiwan