Tianwei Yu

Sun Yat-Sen University, Guangzhou, Guangdong Sheng, China

Are you Tianwei Yu?

Claim your profile

Publications (20)94.52 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule-associated tumor suppressor gene (MTUS1, also known as mitochondrial tumor suppressor) is a recently identified tumor suppressor gene that has been implicated in several cancer types. The expression of MTUS1 gene leads to 5 known transcript variants and codes for 5 isoforms of Angiotensin II AT2 receptor interacting protein (ATIP). In this study, we first confirmed that the down-regulation of MTUS1/ATIP was a frequent event in oral tongue squamous cell carcinoma (OTSCC) and the premalignant lesion (leukoplakia). We further demonstrated that the down-regulation of MTUS1/ATIP was correlated with poor differentiation and enhanced proliferation (Ki67 proliferation index). Statistical analysis suggests that the down-regulation of MTUS1/ATIP was associated with reduced overall survival. Isoform specific quantitative RT-PCR assays revealed that ATIP1, ATIP3a and ATIP3b were the major isoforms of the MTUS1 gene products in oral tongue epithelial cells. Significant down-regulations were observed for all 3 ATIP isoforms in OTSCC as compared to matching normal tissues. In vitro functional study showed that the restoration of ATIP1 expression led to G1 arrest, apoptosis and reduction of cell proliferation in OTSCC cell lines. These ATIP1-induced cellular changes were accompanied by reduced phosphorylation of ERK1/2 and up-regulation of p53. Taken together, these data suggest that MTUS1 plays major roles in the progression of OTSCC, and may serve as a biomarker or therapeutic target for patients with OTSCC.
    Molecular oncology 11/2011; 6(1):73-80. · 6.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The members of the Snail superfamily of zinc-finger transcription factors, including Snai1 and Snai2, are involved in essential biological processes, such as epithelial-mesenchymal transition (EMT). Although Snai1 has been investigated in a number of cancers, our knowledge on Snai2 and its role(s) in squamous cell carcinoma of oral tongue (SCCOT) is limited. In this study, we confirmed the previous observation that over-expression of Snai2 is a frequent event in SCCOT. We further demonstrated that Snai2 over-expression is associated with lymph node metastasis in two independent SCCOT patient cohorts (total n = 129). Statistical analysis revealed that Snai2 over-expression was correlated with reduced overall survival. Furthermore, over-expression of Snai2 was correlated with reduced E-cadherin expression and enhanced Vimentin expression, suggesting a functional role of Snai2 in EMT. These observations were confirmed in vitro, in which knockdown of Snai2 induced a switch from a mesenchymal-like morphology to an epithelial-like morphology in SCCOT cell lines, and suppressed the cell invasion and migration. In contrast, ectopic transfection of Snai2 led to enhanced cell invasion and migration. Furthermore, Snai2 knockdown attenuated TGFβ1-induced EMT in SCCOT cell lines. Taken together, these data suggest that Snai2 plays major roles in EMT and the progression of SCCOT and may serve as a therapeutic target for patients at risk of metastasis.
    International Journal of Cancer 06/2011; 130(10):2249-58. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10-20% nucleotide deviation from the canonical ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
    Nucleic Acids Research 04/2010; 38(7):2355-68. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymph node metastasis is a critical event in the progression of tongue squamous cell carcinoma (TSCC). The identification of biomarkers associated with the metastatic process would provide critical prognostic information to facilitate clinical decision making. Previous studies showed that deregulation of manganese superoxide dismutase (SOD2) expression is a frequent event in TSCC and may be associated with enhanced cell invasion. The purpose of this study is to further evaluate whether the expression level of SOD2 is correlated with the metastatic status in TSCC patients. We first examined the SOD2 expression at mRNA level on 53 TSCC and 22 normal control samples based on pooled-analysis of existing microarray datasets. To confirm our observations, we examined the expression of SOD2 at protein level on an additional TSCC patient cohort (n = 100), as well as 31 premalignant dysplasias, 15 normal tongue mucosa, and 32 lymph node metastatic diseases by immunohistochemistry (IHC). The SOD2 mRNA level in primary TSCC tissue is reversely correlated with lymph node metastasis in the first TSCC patient cohort. The SOD2 protein level in primary TSCC tissue is also reversely correlated with lymph node metastasis in the second TSCC patient cohort. Deregulation of SOD2 expression is a common event in TSCC and appears to be associated with disease progression. Statistical analysis revealed that the reduced SOD2 expression in primary tumor tissue is associated with lymph node metastasis in both TSCC patient cohorts examined. Our study suggested that the deregulation of SOD2 in TSCC has potential predictive values for lymph node metastasis, and may serve as a therapeutic target for patients at risk of metastasis.
    BMC Cancer 01/2010; 10:365. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A surface immobilized optical protein sensor has been utilized to detect Interleukin-8 (IL-8) protein, an oral cancer marker, and can reach limit of detection (LOD) at 1.1 pM in buffer without using enzymatic amplification. Only after applying enzymatic amplification to increase the signal level by a few orders of magnitude, ELISA can reach the LOD of 1 pM level. We then develop the confocal optics based sensor for further reducing the optical noise and can extend the LOD of the surface immobilized optical protein sensor two orders in magnitude. These improvements have allowed us to detect IL-8 protein at 4.0 fM in buffer. In addition, these sensitive LODs were achieved without the use of enzymatic signal amplification, such that the simplified protocol can further facilitate the development of point-of-care devices. The ultra sensitive optical protein sensor presented in this paper has a wide number of applications in disease diagnoses. Measurements for detecting biomarkers in clinical sample are much more challenging than the measurements in buffer, due to high background noise contributed by large collections of non-target molecules. We used clinical saliva samples to validate the functionality of the optical protein sensor. Clinical detection of disease-specific biomarkers in saliva offers a non-invasive, alternative approach to using blood or urine. Currently, the main challenge of using saliva as a diagnostic fluid is its inherently low concentration of biomarkers. We compare the measurements of 40 saliva samples; half from oral cancer patients and half from a control group. The data measured by the optical protein sensor is compared with the traditional Enzyme-Linked Immunosorbant Assay (ELISA) values to validate the accuracy of our system. These positive results enable us to proceed to using confocal optical protein sensor to detect other biomarkers, which have much lower concentrations.
    Biosensors and Bioelectronics 05/2008; 24(2):266-71. · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The head and neck/oral squamous cell carcinoma (HNOSCC) is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC) is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1), and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5). The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.
    BMC Genomics 02/2008; 9:69. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rapid advances in high-throughput microarray technologies greatly facilitate the disease biomarker discovery. However, the potential of these microarray data has not yet been fully utilized. This is partly due to the limited sample sizes of each individual study. Combining microarray data from multiple studies improves the statistical power of detecting differentially expressed genes. Here we present a method for combining the microarray datasets at array probeset level. Using datasets from two commonly used array platforms, the Affymetrix Human Genome U133A and Human Genome U133 Plus 2.0 arrays, we found laboratory effects may be more influential than the platform effect. A visualization scheme for merging the array data from different array platforms was proposed to qualitatively judge the degree of agreement between datasets. A mixed-effects model was applied to identify differentially expressed genes from the merged array data.
    Frontiers in Bioscience 02/2008; 13:2714-20. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is a critical event in oral squamous cell carcinoma (OSCC) progression. To identify proteomic biomarkers for OSCC metastasis, 3 paired OSCC cell lines (UM1/UM2, 1386Tu/1386Ln, 686Tu/686Ln) with different metastatic potential were examined. Among those 3 cell lines, UM1, 1386Ln and 686Ln exhibited a higher degree of metastatic potential than their paired cell lines UM2, 1386Tu and 686Tu, respectively, as measured using an in vitro cell invasion assay. A total of 40 differentially expressed proteins were identified using 2D-PAGE/MS proteomic approach. Selected protein candidates (superoxide dismutase 2 and heat shock protein 27) were further investigated by immuno-histochemistry (IHC) method using independent OSCC patient tissue samples. The statistically significantly increases in IHC staining for manganese superoxide dismutase 2 (SOD2) were observed in lymph node metastatic disease when compared with the paired primary OSCC. Our results thus indicated that elevated SOD2 levels is associated with lymph node metastasis in OSCC and may provide predictive values for diagnosis of metastasis.
    Cancer genomics & proteomics 01/2008; 5(2):85-94.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify a panel of protein and messenger RNA (mRNA) biomarkers in human whole saliva (WS) that may be used in the detection of primary Sjögren's syndrome (SS). Mass spectrometry and expression microarray profiling were used to identify candidate protein and mRNA biomarkers of primary SS in WS samples. Validation of the discovered mRNA and protein biomarkers was also demonstrated using real-time quantitative polymerase chain reaction and immunoblotting techniques. Sixteen WS proteins were found to be down-regulated and 25 WS proteins were found to be up-regulated in primary SS patients compared with matched healthy control subjects. These proteins reflected the damage of glandular cells and inflammation of the oral cavity system in patients with primary SS. In addition, 16 WS peptides (10 up-regulated and 6 down-regulated in primary SS) were found at significantly different levels (P < 0.05) in primary SS patients and controls. Using stringent criteria (3-fold change; P < 0.0005), 27 mRNA in saliva samples were found to be significantly up-regulated in the primary SS patients. Strikingly, 19 of 27 genes that were found to be overexpressed were interferon-inducible or were related to lymphocyte filtration and antigen presentation known to be involved in the pathogenesis of primary SS. Our preliminary study has indicated that WS from patients with primary SS contains molecular signatures that reflect damaged glandular cells and an activated immune response in this autoimmune disease. These candidate proteomic and genomic biomarkers may improve the clinical detection of primary SS once they have been further validated. We also found that WS contains more informative proteins, peptides, and mRNA, as compared with gland-specific saliva, that can be used in generating candidate biomarkers for the detection of primary SS.
    Arthritis & Rheumatology 11/2007; 56(11):3588-600. · 7.48 Impact Factor
  • Source
    Wei Sun, Tianwei Yu, Ker-Chau Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of gene expression quantitative trait loci (eQTL) in different organisms have shown the existence of eQTL hot spots: each being a small segment of DNA sequence that harbors the eQTL of a large number of genes. Two questions of great interest about eQTL hot spots arise: (1) which gene within the hot spot is responsible for the linkages, i.e. which gene is the quantitative trait gene (QTG)? (2) How does a QTG affect the expression levels of many genes linked to it? Answers to the first question can be offered by available biological evidence or by statistical methods. The second question is harder to address. One simple situation is that the QTG encodes a transcription factor (TF), which regulates the expression of genes linked to it. However, previous results have shown that TFs are not overrepresented in the eQTL hot spots. In this article, we consider the scenario that the propagation of genetic perturbation from a QTG to other linked genes is mediated by the TF activity. We develop a procedure to detect the eQTL modules (eQTL hot spots together with linked genes) that are compatible with this scenario. We first detect 27 eQTL modules from a yeast eQTL data, and estimate TF activity profiles using the method of Yu and Li (2005). Then likelihood ratio tests (LRTs) are conducted to find 760 relationships supporting the scenario of TF activity mediation: (DNA polymorphism --> cis-linked gene --> TF activity --> downstream linked gene). They are organized into 4 eQTL modules: an amino acid synthesis module featuring a cis-linked gene LEU2 and the mediating TF Leu3; a pheromone response module featuring a cis-linked gene GPA1 and the mediating TF Ste12; an energy-source control module featuring two cis-linked genes, GSY2 and HAP1, and the mediating TF Hap1; a mitotic exit module featuring four cis-linked genes, AMN1, CSH1, DEM1 and TOS1, and the mediating TF complex Ace2/Swi5. Gene Ontology is utilized to reveal interesting functional groups of the downstream genes in each module. Our methods are implemented in an R package: eqtl.TF, which includes source codes and relevant data. It can be freely downloaded at http://www.stat.ucla.edu/~sunwei/software.htm. http://www.stat.ucla.edu/~sunwei/yeast_eQTL_TF/supplementary.pdf.
    Bioinformatics 10/2007; 23(17):2290-7. · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA copy number aberration (CNA) is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP) genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH), the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required. We have developed a highly sensitive algorithm for the edge detection of copy number data which is especially suitable for the SNP array-based copy number data. The method consists of an over-sensitive edge-detection step and a test-based forward-backward edge selection step. Using simulations constructed from real experimental data, the method shows high sensitivity and specificity in detecting small copy number changes in focused regions. The method is implemented in an R package FASeg, which includes data processing and visualization utilities, as well as libraries for processing Affymetrix SNP array data.
    BMC Bioinformatics 02/2007; 8:145. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral fluid (saliva) meets the demands for a noninvasive and accessible diagnostic medium. Recent reports by our group and others described the presence and use of human RNA in saliva as a diagnostic or forensic tool, including the use for oral cancer detection. To gain insights into the integrity of salivary RNA, we examined in detail the integrity of salivary RNA by generating a cDNA library from pooled supernatant saliva of 10 healthy donors. From a library with a primary library titer of 1.3 x 10(6) cfu/mL of which 95% of the clones had inserts, we successfully sequenced 117 random colonies containing recombinant clones. BLAST search results indicated that all of these clones contained sequences of human origin. Most of the salivary RNAs appeared to be endonucleolytically cleaved at random positions as indicated by comparisons to respective full length parental RNAs from the Genbank. Twelve of the insert sequences matched to the normal salivary core transcriptome sequences, which are highly abundant mRNAs present in healthy individuals. This study provides an in-depth molecular analysis of the saliva transcriptome and should be a useful resource for future basic and translational studies of RNA in human saliva. In addition, this paper presents unequivocal evidence for the presence of RNA in saliva as determined by the use of diverse techniques such as reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), in vitro translation, and the construction of a salivary cDNA library.
    Archives of Oral Biology 02/2007; 52(1):30-5. · 1.55 Impact Factor
  • Clinical Chemistry 01/2007; 52(12):2303-4. · 7.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomic analysis of human oral fluid (whole saliva) holds promise as a non-invasive method to identify biomarkers for human oral cancer, a high impact local disease in the oral cavity affecting 38,000 Americans and with 350,000 cases worldwide annually. In this study, matrix-assisted laser desorption/ionization--mass spectrometry (MALDI-MS) was used to profile oral fluid samples from oral cancer and control subjects, and 46 peptides/proteins were found at significantly different levels between the two groups. To identify a candidate protein biomarker, oral fluid samples were separated by liquid chromatography (LC) using a C4 reversed-phase column. The collected LC fractions were monitored by MALDI-MS and the fraction containing the candidate biomarker was digested for LC-MS/MS analysis to identify it. The use of nanospray MS/MS for the identification of candidate peptide biomarkers was also demonstrated. This approach can be useful for the identification of protein or peptide biomarkers following MALDI-MS or surface-enhanced laser desorption/ionization MS profiling of clinical samples. This study clearly demonstrated that oral fluid contains proteomic signatures that may serve as biomarkers for human diseases such as oral cancer. Once discovered and validated on a large and independent clinical cohort, oral fluid proteomic biomarkers may be extensively used for future disease diagnosis.
    Cancer genomics & proteomics 01/2007; 4(2):55-64.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that human mRNAs are present in saliva and can be used as biomarkers of oral cancer. In this study, we analyzed the integrity, sources, and stability of salivary RNA. We measured the integrity of salivary RNA with reverse transcription followed by PCR (RT-PCR) or RT-quantitative PCR (RT-qPCR). To study RNA entry sites into the oral cavity, we used RT-PCR analysis of salivary RNA from the 3 major salivary glands, gingival crevice fluid, and desquamated oral epithelial cells. We measured stability of the salivary beta-actin mRNA by RT-qPCR of salivary RNA incubated at room temperature for different periods of time. We measured RNA association with other macromolecules by filtering saliva through pores of different sizes before performing RT-qPCR. To assess RNA-macromolecule interaction, we incubated saliva with Triton X-100 for different periods of time before performing RT-qPCR. In most cases, we detected partial- to full-length salivary mRNAs and smaller amounts of middle and 3' gene amplicons compared with the 5'. RNA was present in all oral fluids examined. Endogenous salivary beta-actin mRNA degraded more slowly than exogenous beta-actin mRNA, with half-lives of 12.2 and 0.4 min, respectively (P <0.001). Salivary RNA could not pass through 0.22 or 0.45 mum pores. Incubation of saliva with Triton X-100 accelerated degradation of salivary RNA. Saliva harbors both full-length and partially degraded forms of mRNA. RNA enters the oral cavity from different sources, and association with macromolecules may protect salivary RNA from degradation.
    Clinical Chemistry 06/2006; 52(6):988-94. · 7.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most human cancers are characterized by genetic instabilities. These instabilities manifest themselves as a series of genetic alterations, including discrete mutations and chromosomal aberrations. With the human genome deciphered, high-throughput technologies are rapidly advancing the field to generate genome-wide gene expression and mutation profiles that are highly correlative of biologic and disease phenotypes. While recent advancement in comprehensive genomic characterization presents an unprecedented opportunity for advancing the treatment of cancer, there are still many challenges that need to be overcome before we can fully utilize genomic markers and targets for cancer prediction, diagnostics, treatment and prognostics. This review describes recent advances in comprehensive genomic characterization at the DNA level, and considers some of the challenges that remain for defining the precise genomic portrait of tumors. Potential solutions that may help overcome these challenges are also offered.
    Expert Review of Molecular Diagnostics 02/2006; 6(1):39-50. · 4.09 Impact Factor
  • Source
    Tianwei Yu, Ker-Chau Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Microarray gene expression and cross-linking chromatin immunoprecipitation data contain voluminous information that can help the identification of transcriptional regulatory networks at the full genome scale. Such high-throughput data are noisy however. In contrast, from the biomedical literature, we can find many evidenced transcription factor (TF)-target gene binding relationships that have been elucidated at the molecular level. But such sporadically generated knowledge only offers glimpses on limited patches of the network. How to incorporate this valuable knowledge resource to build more reliable network models remains a question. We present a modified factor analysis approach. Our algorithm starts with the evidenced TF-gene linkages. It iterates between the network configuration estimation step and the connection strength estimation step, using the high-throughput data, till convergence. We report two comprehensive regulatory networks obtained for Saccharomyces cerevisiae, one under the normal growth condition and the other under the environmental stress condition. http://kiefer.stat.ucla.edu/lap2/download/bti656_supplement.pdf.
    Bioinformatics 12/2005; 21(21):4033-8. · 5.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular processes are not isolated groups of events. Nevertheless, in most microarray analyses, they tend to be treated as standalone units. To shed light on how various parts of the interlocked biological processes are coordinated at the transcription level, there is a need to study the between-unit expressional relationship directly. We approach this issue by constructing an index of correlation function to convey the global pattern of coexpression between genes from one process and genes from the entire genome. Processes with similar signatures are then identified and projected to a process-to-process association graph. This top-down method allows for detailed gene-level analysis between linked processes to follow up. Using the cell-cycle gene-expression profiles for Saccharomyces cerevisiae, we report well-organized networks of biological processes that would be difficult to find otherwise. Using another dataset, we report a sharply different network structure featuring cellular responses under environmental stress. http://kiefer.stat.ucla.edu/lap2/download/KL_supplement.pdf.
    Bioinformatics 10/2005; 21(18):3651-7. · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statistical similarity analysis has been instrumental in elucidation of the voluminous microarray data. Genes with correlated expression profiles tend to be functionally associated. However, the majority of functionally associated genes turn out to be uncorrelated. One conceivable reason is that the expression of a gene can be sensitively dependent on the often-varying cellular state. The intrinsic state change has to be plastically accommodated by gene-regulatory mechanisms. To capture such dynamic coexpression between genes, a concept termed "liquid association" (LA) has been introduced recently. LA offers a scoring system to guide a genome-wide search for critical cellular players that may interfere with the coexpression of a pair of genes, thereby weakening their overall correlation. Although the LA method works in many cases, a direct extension to more than two genes is hindered by the "curse of dimensionality." Here we introduce a strategy of finding an informative 2D projection to generalize LA for multiple genes. A web site is constructed that performs on-line LA computation for any user-specified group of genes. We apply this scoring system to study yeast protein complexes by using the Saccharomyces cerevisiae protein complexes database of the Munich Information Center for Protein Sequences. Human genes are also investigated by profiling of 60 cancer cell lines of the National Cancer Institute. In particular, our system links the expression of the Alzheimer's disease hallmark gene APP (amyloid-beta precursor protein) to the beta-site-cleaving enzymes BACE and BACE2, the gamma-site-cleaving enzymes presenilin 1 and 2, apolipoprotein E, and other Alzheimer's disease-related genes.
    Proceedings of the National Academy of Sciences 12/2004; 101(44):15561-6. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative polymerase chain reaction (QPCR), also known as real-time polymerase chain reaction or kinetic polymerase chain reaction, is a technique used to simultaneously quantify and amplify a specific part of a given DNA molecule. QPCR follows the general procedure of PCR reaction, but the DNA is quantified after each PCR amplification cycle, making the quantification “real-time”. It is used to determine whether or not a specific sequence is present in a specific sample; and if present, the number of copies in the sample. When the QPCR technique is combined with the reverse transcription polymerase chain reaction (RT-PCR), known as quantitative reverse ­transcription-polymerase chain reaction (QRT-PCR), it enables researchers to quantify low abundance messenger RNA (mRNA) at a particular time, or in a particular cell or tissue type.

Publication Stats

580 Citations
94.52 Total Impact Points

Institutions

  • 2011
    • Sun Yat-Sen University
      • Department of Oral and Maxillofacial Surgery
      Guangzhou, Guangdong Sheng, China
  • 2008–2011
    • University of Illinois at Chicago
      • Center for Molecular Biology of Oral Diseases
      Chicago, IL, United States
  • 2007–2011
    • Emory University
      • Department of Biostatistics and Bioinformatics
      Atlanta, GA, United States
    • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
      Torrance, California, United States
  • 2004–2007
    • University of California, Los Angeles
      • • Dental Research Institute
      • • Department of Statistics
      Los Angeles, California, United States