Tom Horan

Amgen, Thousand Oaks, California, United States

Are you Tom Horan?

Claim your profile

Publications (20)175.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human Dickkopf-1 (huDKK1), an inhibitor of the canonical Wnt-signaling pathway that has been implicated in bone metabolism and other diseases, was expressed in engineered Chinese hamster ovary cells and purified. HuDKK1 is biologically active in a TCF/lef-luciferase reporter gene assay and is able to bind LRP6 coreceptor. In SDS-PAGE, huDKK1 exhibits molecular weights of 27-28 K and 30 K at ∼ 1:9 ratio. By MALDI-MS analysis, the observed molecular weights of 27.4K and 29.5K indicate that the low molecular weight form may contain O-linked glycans while the high molecular weight form contains both N- and O-linked glycans. LC-MS/MS peptide mapping indicates that ∼ 92% of huDKK1 is glycosylated at Asn²²⁵ with three N-linked glycans composed of two biantennary forms with 1 and 2 sialic acid (23% and 60%, respectively), and one triantennary structure with 2 sialic acids (9%). HuDKK1 contains two O-linked glycans, GalNAc (sialic acid)-Gal-sialic acid (65%) and GalNAc-Gal[sialic acid] (30%), attached at Ser³⁰ as confirmed by β-elimination and targeted LC-MS/MS. The 10 intramolecular disulfide bonds at the N- and C-terminal cysteine-rich domains were elucidated by analyses including multiple proteolytic digestions, isolation and characterization of disulfide-containing peptides, and secondary digestion and characterization of selected disulfide-containing peptides. The five disulfide bonds within the huDKK1 N-terminal domain are unique to the DKK family proteins; there are no exact matches in disulfide positioning when compared to other known disulfide clusters. The five disulfide bonds assigned in the C-terminal domain show the expected homology with those found in colipase and other reported disulfide clusters.
    Protein Science 07/2011; 20(11):1802-13. · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 07/2011; 26(11):2610-21. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous work has shown ICOS can function independently of CD28, but whether either molecule can compensate for the other in vivo is not known. Since ICOS is a potent inducer of Th2 cytokines and linked to allergy and elevated serum IgE in humans, we hypothesized that augmenting ICOS costimulation in murine allergic airway disease may overcome CD28 deficiency. While ICOS was expressed on T cells from CD28(-/-) mice, Th2-mediated airway inflammation was not induced in CD28(-/-) mice by increased ICOS costimulation. Further, we determined if augmenting CD28 costimulation could compensate for ICOS deficiency. ICOS(-/-) mice had a defect in airway eosinophilia that was not overcome by augmenting CD28 costimulation. CD28 costimulation also did not fully compensate for ICOS for antibody responses, germinal center formation or the development of follicular B helper T cells. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo.
    Cellular Immunology 08/2009; 259(2):177-84. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ICOS (Inducible T cell Co-Stimulator)/B7RP-1 (B7-related protein 1) interaction is critical for the proper activation of a T lymphocyte. In this manuscript we describe a systematic in vivo approach to determine the level of blockade required to impair the generation of a T cell-dependent antibody response. We have developed an overall strategy for correlating drug exposure, target saturation, and efficacy in a biological response that can be generalized for most protein therapeutics. Using this strategy, we determined that low levels of B7RP-1 blockade are still sufficient to inhibit the immune response. These data suggest that contact between the T cell and the antigen-presenting cell during antigen presentation is much more sensitive to inhibition than previously believed and that ICOS/B7RP-1 blockade may be efficacious in the treatment of autoimmune diseases.
    European journal of pharmacology 04/2009; 610(1-3):110-8. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Programmed death-1 ligand 2 (PD-L2) is a ligand for programmed death-1 (PD-1), a receptor that plays an inhibitory role in T cell activation. Since previous studies have shown up-regulation of PD-L2 expression by Th2 cytokines, and asthma is driven by a Th2 response, we hypothesized that PD-L2 might be involved in regulation of the immune response in this disease. We have found that lungs from asthmatic mice had sustained up-regulation of PD-1 and PD-L2, with PD-L2 primarily on dendritic cells. Although addition of PD-L2-Fc in vitro led to decreased T cell proliferation and cytokine production, administration of PD-L2-Fc in vivo in a mouse asthma model resulted in elevated serum IgE levels, increased eosinophilic and lymphocytic infiltration into bronchoalveolar lavage fluid, higher number of cells in the draining lymph nodes, and production of IL-5 and IL-13 from these cells. Although PD-1 was expressed on regulatory T cells, PD-L2-Fc did not affect regulatory T cell activity in vitro. This study provides in vivo evidence of an exacerbated inflammatory response following PD-L2-Fc administration and indicates a potential role for this molecule in Th2-mediated diseases such as asthma.
    European Journal of Immunology 01/2005; 34(12):3326-36. · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the in vivo function of the B7 family member B7-H3 (also known as B7RP-2) by gene targeting. B7-H3 inhibited T cell proliferation mediated by antibody to T cell receptor or allogeneic antigen-presenting cells. B7-H3-deficient mice developed more severe airway inflammation than did wild-type mice in conditions in which T helper cells differentiated toward type 1 (T(H)1) rather than type 2 (T(H)2). B7-H3 expression was consistently enhanced by interferon-gamma but suppressed by interleukin 4 in dendritic cells. B7-H3-deficient mice developed experimental autoimmune encephalomyelitis several days earlier than their wild-type littermates, and accumulated higher concentrations of autoantibodies to DNA. Thus, B7-H3 is a negative regulator that preferentially affects T(H)1 responses.
    Nature Immunology 10/2003; 4(9):899-906. · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have characterized a receptor:ligand pair, ICOS:B7RP-1, that is structurally and functionally related to CD28:B7.1/2. We reported previously that B7RP-1 costimulates T cell proliferation and immune responses (Yoshinaga et al., Nature 1999;402:827-32; Guo et al., J Immunol 2001;166:5578-84; Yoshinaga et al., Int Immunol 2000;12:1439-47). We report that B7RP-1-Fc causes rejection or growth inhibition of Meth A, SA-1 and EMT6 tumors in syngeneic mice. Established Meth A tumors were rejected effectively with a single dose of B7RP-1-Fc, however, the treatment was less effective on larger tumors. Mice that rejected Meth A tumors previously by Day 30, also rejected a subsequent Meth A challenge on Day 60, without additional B7RP-1-Fc treatment, indicating a long-lived memory response. Tumor cells believed to be less immunogenic, such as P815 and EL-4 cells, were less responsive to this treatment. The EL-4 responsiveness to the B7RP-1-Fc treatment was enhanced, however, by pre-treatment of the mice with cyclophosphamide. As expected, T cells appeared to be targeted by B7RP-1-Fc treatment. Thus, the administration of soluble B7RP-1-Fc may have therapeutic value in generating or enhancing anti-tumor activity in a clinical setting.
    International Journal of Cancer 03/2003; 103(4):501-7. · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NF-kappa B-inducing kinase (NIK) is involved in lymphoid organogenesis in mice through lymphotoxin-beta receptor signaling. To clarify the roles of NIK in T cell activation through TCR/CD3 and costimulation pathways, we have studied the function of T cells from aly mice, a strain with mutant NIK. NIK mutant T cells showed impaired proliferation and IL-2 production in response to anti-CD3 stimulation, and these effects were caused by impaired NF-kappa B activity in both mature and immature T cells; the impaired NF-kappa B activity in mature T cells was also associated with the failure of maintenance of activated NF-kappa B. In contrast, responses to costimulatory signals were largely retained in aly mice, suggesting that NIK is not uniquely coupled to the costimulatory pathways. When NIK mutant T cells were stimulated in the presence of a protein kinase C (PKC) inhibitor, proliferative responses were abrogated more severely than in control mice, suggesting that both NIK and PKC control T cell activation in a cooperative manner. We also demonstrated that NIK and PKC are involved in distinct NF-kappa B activation pathways downstream of TCR/CD3. These results suggest critical roles for NIK in setting the threshold for T cell activation, and partly account for the immunodeficiency in aly mice.
    The Journal of Immunology 09/2002; 169(3):1151-8. · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.
    The Journal of Immunology 08/2002; 169(2):937-43. · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inducible costimulator (ICOS) and B7-related protein-1 (B7RP-1) constitute a receptor-ligand pair involved in T cell costimulation. In this study, the stimulatory effects of B7RP-1 on cellular and humoral immune responses were investigated giving mice a construct with the extracellular domain of murine B7RP-1 fused with human IgG1 Fc (B7RP-1-Fc). B7RP-1-Fc stimulated contact hypersensitivity (CH) given near either the time of sensitization or challenge with oxazolone. When given near challenge time, B7RP-1-Fc stimulated CH more than a construct containing the extracellular domain of murine B7.2 and Fc (B7.2-Fc). B7RP-1-Fc increased the number of cells in lymph nodes draining the skin sensitized with oxazolone, especially activated T cells. B7RP-1-Fc also increased the ability of the cells in these lymph nodes to induce CH when transfused into naive mice. B7RP-1-Fc stimulated the production of anti-keyhole limpet hemocyanin (KLH) Ab, increasing anti-KLH IgG, IgG2a, and IgE, whereas B7.2-Fc did not affect this production. B7RP-1-Fc also increased the number of cells in lymph nodes draining the skin immunized with KLH and their production of IFN-gamma, IL-4, and IL-10 in response to KLH. Finally, B7RP-1-Fc increased the presence of eosinophils in the bronchoalveolar lavage and lungs of mice sensitized and challenged with OVA so to mount an asthmatic reaction. B7RP-1-Fc stimulates both cellular and humoral immune responses in vivo by increasing number and function of T and B cells reacting to Ag exposure.
    The Journal of Immunology 06/2001; 166(9):5578-84. · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The outcome of T-cell responses after T-cell encounter with specific antigens is modulated by co-stimulatory signals, which are required for both lymphocyte activation and development of adaptive immunity. ICOS, an inducible co-stimulator with homology to CD28, is expressed on activated, but not resting T cells, and shows T-cell co-stimulatory function in vitro. ICOS binds specifically to its counter-receptor B7RP-1 (refs 5,6,7), but not to B7-1 or B7-2. Here we provide in vivo genetic evidence that ICOS delivers a co-stimulatory signal that is essential both for efficient interaction between T and B cells and for normal antibody responses to T-cell-dependent antigens. To determine the physiological function of ICOS, we generated and characterized gene-targeted ICOS-deficient mice. In vivo, a lack of ICOS results in severely deficient T-cell-dependent B-cell responses. Germinal centre formation is impaired and immunoglobulin class switching, including production of allergy-mediating IgE, is defective. ICOS-deficient T cells primed in in vivo and restimulated in vitro with specific antigen produce only low levels of interleukin-4, but remain fully competent to produce interferon-gamma.
    Nature 02/2001; 409(6816):105-9. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optimal T cell activation requires the interactions of co-stimulatory molecules, such as those in the CD28 and B7 protein families. Recently, we described the co-stimulatory properties of the murine ligand to ICOS, which we designated as B7RP-1. Here, we report the co-stimulation of human T cells through the human B7RP-1 and ICOS interaction. This ligand-receptor pair interacts with a K:(D) approximately 33 nM and an off-rate with a t((1/2)) > 10 min. Interestingly, tumor necrosis factor (TNF)-alpha differentially regulates the expression of human B7RP-1 on B cells, monocytes and dendritic cells (DC). TNF-alpha enhances B7RP-1 expression on B cells and monocytes, while it inhibits it on DC. The human B7RP-1-Fc protein or cells that express membrane-bound B7RP-1 co-stimulate T cell proliferation in vitro. Specific cytokines, such as IFN-gamma and IL-10, are induced by B7RP-1 co-stimulation. Although IL-2 levels are not significantly increased, B7RP-1 co-stimulation is dependent on IL-2. These experiments define the human ortholog to murine B7RP-1 and characterize its interaction with human ICOS.
    International Immunology 10/2000; 12(10):1439-47. · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T-cell activation requires co-stimulation through receptors such as CD28 and antigen-specific signalling through the T-cell antigen receptor. Here we describe a new murine costimulatory receptor-ligand pair. The receptor, which is related to CD28 and is the homologue of the human protein ICOS, is expressed on activated T cells and resting memory T cells. The ligand, which has homology to B7 molecules and is called B7-related protein-1 (B7RP-1), is expressed on B cells and macrophages. ICOS and B7RP-I do not interact with proteins in the CD28-B7 pathway, and B7RP-1 co-stimulates T cells in vitro independently of CD28. Transgenic mice expressing a B7RP-1-Fc fusion protein show lymphoid hyperplasia in the spleen, lymph nodes and Peyer's patches. Presensitized mice treated with B7RP-1-Fc during antigen challenge show enhanced hypersensitivity. Therefore, B7RP-1 exhibits co-stimulatory activities in vitro and in vivo. ICOS and B7RP-1 define a new and distinct receptor-ligand pair that is structurally related to CD28-B7 and is involved in the adaptive immune response.
    Nature 12/1999; 402(6763):827-32. · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical modification and mutagenesis of methionines in recombinant human granulocyte colony-stimulating factor (G-CSF) were investigated. Selective oxidation of G-CSF by H2O2 and t-butyl hydroperoxide leads to generation of different oxidized forms. Four modified forms were isolated and shown to contain 1 to 4 oxidized methionyl residues. All methionines in G-CSF are reactive, with reaction kinetics following the order of Met1>Met138>Met127>Met122. H2O2 oxidation of Met122 is relatively slow and is biphasic with a faster second reaction phase being affected by the oxidation of Met127. All oxidized forms retain gross G-CSF conformation similar to that of the native molecule and are able to bind the soluble G-CSF receptor. However, G-CSF form oxidized at both Met127 and Met122 is unstable and exhibits decreased ability to dimerize the receptor after exposure to acid or elevated temperature. All modified forms, except Met1-oxidized G-CSF, also show significantly lower biological activity. Our data suggest that Met138 is solvent accessible and its surrounding microenvironment may be critical for G-CSF function, whereas Met127 is less accessible to solvent and Met122 is near the hydrophobic core. Oxidation at both Met127 and Met122 results in alterations of G-CSF structure that affect the apparent molecular size, polarity, and stability and lead to the loss of G-CSF biological function. G-CSF variants with Leu replacement at Met127 or at Met138 are not completely resistant to oxidation-induced inactivation, while the variant with Leu replacement at both sites is more stable and can retain in vitro biological activity following oxidation.
    Archives of Biochemistry and Biophysics 03/1999; 362(1):1-11. · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The leptin receptor (OB-R) is a member of the class I cytokine receptor family and mediates the weight regulatory effects of its ligand through interaction with cytoplasmic kinases. The extracellular domain of this receptor is comprised of two immunoglobulin-like and cytokine-receptor homology domains each and type III fibronectin domains. The extracellular domain of human leptin receptor was expressed in and purified from Chinese hamster ovary cells and was found to contain extensive N-glycosylation (approximately 36% of the total protein). The purified protein had a molecular weight of approximately 145,000 and exhibited ligand binding ability as evidenced by formation of ligand-receptor complex, followed by chemical cross-linking. The determined disulfide motif of the soluble leptin receptor contained several distinct cystine knots as well as 10 free cysteines. The N-glycosylation analysis revealed that Asn624 of the WSXWS motif (residues 622-626) within the C-terminal cytokine receptor homology domain was glycosylated, indicating that this region is solvent-exposed. On the other hand, the N-terminal WSXWS motif was not glycosylated.
    Journal of Biological Chemistry 11/1998; 273(44):28691-9. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies are routinely purified by acid/salt elution from antigen affinity columns. The antibodies recovered with this procedure are active, but the recovery of protein is often low. We investigated the effect of acid and other denaturing or chaotropic solvents on the conformation of monoclonal antibodies (mAbs) made against the extracellular region of Her2 receptor (sHer2) derived from Chinese hamster ovary cells. The mAb remain almost completely folded in the 0.1 M glycine, pH 2.9, commonly used for elution, with the beta-sheet secondary structure intact, and only very small changes detected in the environment of the tryptophans. In 7 M urea, 50 mM NaAc pH 4.0, the antibody was partially unfolded, with the Trp environment further perturbed and some of the beta-sheet structure converted to disordered structure. In 6 M guanidine HCl, 50 mM NaAc, pH 4.0, the antibody is completely unfolded, with no secondary or tertiary structure present. The antibodies exposed to glycine or urea were refolded by dialysis into phosphate-buffered saline (PBS), while the guanidine HCl-denatured antibodies were refolded by dialysis into 7 M urea, pH 4.0, followed by dialysis into PBS. The refolded antibodies were capable of forming antigen-antibody complexes which could be isolated by gel filtration chromatography. Two different mAbs were subjected to immunoaffinity chromatography on sHer2-Sepharose. mAb86 was eluted by 0.1 M Gly, pH 2.9, while mAb52 was eluted with the 7 M urea, 50 mM NaAc, pH 4.0. The isolated antibodies were refolded by dialysis into PBS, analyzed for their ability to recognize native sHer2 by immunoprecipitation, and denatured sHer2 by Western blot analysis. Both preparations recognized the native protein, but precipitated slightly different forms of sHer2, indicating that they might recognize different epitopes. The mAb52 is a more sensitive reagent for Western blot analysis. Thus, this procedure can be used to recover antibodies which would not be recovered with glycine as the only eluate. It is also possible that the antibodies can be fractionated by the different eluants into populations which can be used for different applications.
    Analytical Biochemistry 12/1997; 253(2):236-45. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conformations of G-CSF and the extracellular domain of its receptor as well as their complex have been investigated by employing isotope-edited FTIR spectroscopy. To determine unambiguously the protein conformations of G-CSF and the receptor in the complex, we have prepared uniformly 13C/15N isotope labeled G-CSF to resolve its amide I' band from that of the receptor in the IR spectrum of the complex. By comparing the IR spectra of the isotope-labeled G-CSF and the receptor with that of the complex, we have provided spectral evidence that the AB loop region involving the unique 310 helix segment of G-CSF likely undergoes a conformational change to a regular alpha-helix upon binding to the receptor. The IR data also indicate a possible minor increase in alpha-helical conformation for the receptor in the complex. Furthermore, FTIR spectra of G-CSF, the receptor, and their complex demonstrate clearly that protein conformations of both G-CSF and the receptor have been dramatically stabilized by complex formation. Specifically, the melting transition (Tm value) of the alpha-helix in G-CSF is increased by nearly 30 degrees C and that of the beta-strand in the receptor by nearly 15 degrees C in the G-CSF/receptor complex. We estimate from the current FTIR data that the native conformations of approximately 15% of all receptor residues are stabilized by G-CSF binding. On the other hand, the entire alpha-helical content of G-CSF appears to be stabilized in the complex. Together, these results indicate that formation of the ligand/receptor complex results in not only conformational changes in the receptor but also significant structural changes in the ligand. This adds insight to the general consensus that binding of ligand to cytokine receptors induces mostly structural changes in the receptor which lead to receptor oligomerization and signal transduction. The current data also suggest a possible physiological role of the 310 helix present in G-CSF for its receptor binding activity.
    Biochemistry 08/1997; 36(29):8849-57. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granulocyte-colony stimulating factor (G-CSF) binds to a specific cell surface receptor and induces signals for growth and differentiation in cells of granulocyte hematopoietic lineage. In order to understand how G-CSF binding initiates signals into these cells, we have studied its interactions with the entire extracellular domain of the receptor (sG-CSFR). The sG-CSFR was purified from CHO cell conditioned media with a G-CSF affinity column, resting in a preparation fully competent for ligand binding. However, when sG-CSFR was purified by conventional means, i.e., without affinity chromatography, only about half was competent. Therefore, all studies were carried out using affinity-purified material. The sG-CSFR exhibited a weak self-association into a dimer with a dissociation constant of 200microM in the absence of G-CSF. Addition of G-CSF dimerizes the receptor, with a preferred stoichiometry of 2 G-CSF molecules plus 2 receptors. Unexpectedly, receptor-receptor interactions rather than through two receptors binding to the same G-CSF molecule; i.e., G-CSF is a monovalent ligand. G-CSF binding to the receptor monomer occurs with high affinity. The binding of G-CSF also enhances the receptor-receptor dimerization; when G-CSF is bound to both receptors, dimerization is enhanced 2000-fold, while the interaction of a 1:1 receptor-ligand complex with a second ligand-free receptor is enhanced 80-fold. Thus, the mechanism of receptor dimerization is fundamentally different than that of related cytokine receptors such as growth hormone and erythropoietin receptors. Circular dichroic spectra showed a small but significant conformational change of receptor upon binding G-CSF. This is consistent with the idea that G-CSF binding alters the conformation of the receptor, resulting in an increase in receptor-receptor interactions.
    Biochemistry 05/1996; 35(15):4886-96. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An extracellular domain of human granulocyte-colony stimulating factor (G-CSF) receptor was expressed in and purified from Chinese hamster ovary cells. Complex formation between G-CSF and the receptor was studied by size exclusion chromatography, followed by chemical cross-linking. The receptor-ligand complex contained an equimolar ratio of each protein. Crosslinking experiments using disucciniimide suberate revealed that the native complex contained at least two types of cross-linked complexes; one form contained one or two G-CSF molecules per receptor molecule, whereas another form contained one or two G-CSF per two receptor molecules. The tryptic peptide map of the cross-linked complex provided a unique peptide peak which was not found in a peptide map of the original protein. Sequence analysis and mass spectrometry of the peptide indicated that two peptides were covalently linked by cross-linker, one peptide from G-CSF and the other from the receptor. In the cross-linked peptide, Lys-242 of the receptor cross-linked the amino terminal Met of G-CSF through the cross-linker. It was also shown that the N-terminal Met of G-CSF was readily acetylated in the receptor-ligand complex, indicating that it was not directly involved in receptor binding. The results show that the N-terminal Met of G-CSF is located at a distance of approximately 11 A from a reactive Lys-242 of the receptor in the ligand-receptor complex.
    Archives of Biochemistry and Biophysics 01/1996; 324(2):344-56. · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of neu differentiation factor (NDF) with the extracellular domains of Her2 (sHer2) and Her3 (sHer3) have been studied using native gels, light scattering, and sedimentation equilibrium. The full-length NDF beta 2 was shown to bind sHer3 with a dissociation constant of 26 +/- 9 nM, while it showed a 1000-fold weaker binding to sHer2. Taken together, these results demonstrate that NDF is a high affinity ligand for Her3, but not for Her2. No increase in affinity of the NDF beta 2 for sHer3 was observed upon addition of sHer2 to the NDF beta 2-sHer3 mixture. Binding of NDF beta 2 to sHer3 did not induce receptor dimerization or oligomerization, the stoichiometry being one sHer3 per one NDF molecule. This finding suggests that transmembrane and/or intracellular domains of receptor family members or perhaps additional unidentified components may be involved in NDF induced dimerization and autophosphorylation, or alternatively, that dimerization is not the mechanism for Her3 autophosphorylation and signal transduction.
    Journal of Biological Chemistry 11/1995; 270(41):24604-8. · 4.60 Impact Factor