Hitoshi Okochi

National Center for Global Health and Medicine in Japan, Edo, Tōkyō, Japan

Are you Hitoshi Okochi?

Claim your profile

Publications (84)341.98 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Cilostazol, an inhibitor of phosphodiesterase type III, is an antiplatelet agent and vasodilator. Some clinical reports have suggested that this drug can improve progressive and refractory lymphedema. Objective In this study, we investigated whether cilostazol has the potential to proliferate lymphatic vessels and to improve lymphatic function using human lymphatic endothelial cells (LECs) and mouse lymphedema models. Methods Human LECs were counted at several time points while they were cultured in the presence of cilostazol and/or protein kinase A inhibitor. After receiving a diet including 0.1% cilostazol or control diet, skin tissue and lymphatic function of k-cyclin transgenic (kCYC + /-) mice, which have pernicious lymphatic dysfunction, was analyzed. A different lymphedema model was generated in wild type mice by excising circumferential tail skin to remove the superficial lymphatics. After oral administration of cilostazol, tail lymphedema was examined in this mouse model. Results Proliferation of LECs was promoted in a dose-dependent manner, which was partially inhibited by a protein kinase A inhibitor. Lymphatic vessel count increased in the cilostazol-treated kCYC+/− mice over that in the non-treated mice. Lymph flow improved in cilostazol-fed kCYC+/− mice as assessed by subcutaneous injection of Evans blue dye into the footpad. Oral administration of cilostazol also decreased lymphedema in a tail of wild type mice. Conclusion Cilostazol promoted growth of human LECs and improved lymph flow and lymphedema in two different mouse lymphedema models. These results suggest that cilostazol would be a promising agent for the treatment of lymphedema.
    Journal of dermatological science 01/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensitization and challenge using dinitrofluorobenzene (DNFB) induce contact hypersensitivity (CHS) with Th1 cell infiltration, whereas those using FITC generate CHS with Th2 cell infiltration. In this study, we attempted to determine the role of CXCR3, a chemokine receptor, in Th1- and Th2-type CHS induced by DNFB or FITC using CXCR3-deficient (CXCR3(-/-)) mice. Ear swelling was prolonged after DNFB challenge in CXCR3(-/-) mice, which was accompanied by increased Th1 cytokines and decreased TGF-β and IL-10 expression at a late time point of CHS, whereas there was no significant difference between wild-type and CXCR3(-/-) mice in FITC-induced CHS. In Th1-type CHS, the number of regulatory T cells (Tregs) was decreased in the challenged ear of CXCR3(-/-) mice compared with that of wild-type mice, suggesting that CXCR3 would be important in migration of Tregs into the site of inflammation. Moreover, we examined the characteristics of CXCR3(+) Tregs both in vitro and in vivo, revealing that CXCR3(+) Tregs expressed high levels of TGF-β and IL-10 as well as IFN-γ compared with CXCR3(-) Tregs. When CXCR3(-/-) mice were injected with CXCR3(+) Tregs, the prolonged ear swelling induced by DNFB was normalized. Taken together, our results suggest that CXCR3(+) Tregs play a key role for quenching Th1-type CHS.
    The Journal of Immunology 05/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin wound healing is an interactive process involving soluble mediators, ECM, resident cells, and infiltrating cells. Little is known about wound healing in the presence of lymphedema. In this study, we investigated wound healing using kCYC(+/-) mice, which demonstrate severe lymphatic dysfunction. Wound healing was delayed significantly in kCYC(+/-) mice when compared with WT mice. In wounded skin of kCYC(+/-) mice, mast cell numbers were increased compared with WT mice, whereas macrophage numbers were decreased. Moreover, IL-10 expression by mast cells was increased, and expression of bFGF, mainly produced by macrophages, was decreased in wounded skin of kCYC(+/-) mice compared with WT mice. We next crossed kCYC(+/-) mice with IL-10(-/-) mice, which were reported to show accelerated wound closure. In kCYC(+/-) IL-10(+/-) mice, time course of wound healing, numbers of macrophages, and IL-10 mRNA expression levels in wounded skin were comparable with WT IL-10(+/-) mice. Similar results were obtained using a different lymphedema model, in which circumferential skin excision was performed on the tails of mice to remove the superficial lymphatics. In summary, these findings suggest that IL-10 plays an important role in delayed wound healing in the setting of lymphatic dysfunction.
    Journal of leukocyte biology 05/2013; · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factors (TFs) are able to regulate differentiation-related processes, including dedifferentiation and direct conversion, through the regulation of cell type-specific transcriptional profiles. However, the functional interactions between the TFs regulating different transcriptional profiles are not well understood. Here, we show that the TFs capable of inducing cell type-specific transcriptional profiles prevent the dedifferentiation induced by TFs for pluripotency. Of the large number of TFs expressed in a neural-lineage cell line, we identified a subset of TFs that, when overexpressed, strongly interfered with the dedifferentiation triggered by the procedure to generate induced pluripotent stem cells. This interference occurred through a maintenance mechanism of the cell type-specific transcriptional profile. Strikingly, the maintenance activity of the interfering TF set was strong enough to induce the cell line-specific transcriptional profile when overexpressed in a heterologous cell type. In addition, the TFs that interfered with dedifferentiation in hepatic-lineage cells involved TFs with known induction activity for hepatic-lineage cells. Our results suggest that dedifferentiation suppresses a cell type-specific transcriptional profile, which is primarily maintained by a small subset of TFs capable of inducing direct conversion. We anticipate that this functional correlation might be applicable in various cell types and might facilitate the identification of TFs with induction activity in efforts to understand differentiation.
    Proceedings of the National Academy of Sciences 04/2013; · 9.81 Impact Factor
  • Journal of Dermatological Science. 02/2013; 69(2):e26.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Classically activated macrophages produce IL-12, IL-23, and TNF-α, whereas alternatively activated macrophages (M2 cells) produce IL-10 and express several receptors such as mannose receptor and CD163. Tumor-associated macrophages exhibit M2 phenotype, whose presence has been associated with poor prognosis in various tumors. To investigate distribution of CD163(+) cells in lesional skin and serum levels of soluble CD163 (sCD163) in patients with cutaneous T cell lymphoma (CTCL), atopic dermatitis (AD), or psoriasis. The numbers of CD163(+) and CD68(+) cells in lesional skin of CTCL, AD, or psoriasis, and in normal skin were examined by immunohistochemistry. Serum soluble CD163 (sCD163) levels were quantified by enzyme-linked immunosorbent assay. The numbers of CD163(+) cells in lesional skin of CTCL, AD, or psoriasis were significantly larger than in normal skin. In CTCL, the numbers of CD163(+) or CD68(+) cells increased as more tumor cells infiltrated and they decreased after treatment with topical steroid and ultraviolet light. Moreover, CTCL patients with an increased number of CD163(+) cells showed worse prognosis. Serum sCD163 levels in patients with CTCL, AD, or psoriasis were significantly higher than those in normal controls. In CTCL patients, serum sCD163 levels significantly correlated with serum soluble interleukin-2 receptor and CCL17 levels. In AD patients, serum sCD163 levels correlated with serum IgE levels. The numbers of CD163(+) cells in lesional skin and serum sCD163 levels were associated with disease progression of CTCL. Further study focusing on CD163(+) cells in CTCL lesional skin would be an interesting research field.
    Journal of dermatological science 07/2012; 68(1):45-51. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymph transports tissue-resident dendritic cells (DCs) to regional lymph nodes (LNs), having important roles in immune function. The biological effects on tissue inflammation following lymphatic flow obstruction in vivo, however, are not fully known. In this study, we investigated the role of the lymphatic system in contact hypersensitivity (CHS) responses using k-cyclin transgenic (kCYC(+/-)) mice, which demonstrate severe lymphatic dysfunction. kCYC(+/-) mice showed enhanced ear swelling to both DNFB and FITC, as well as stronger irritant responses to croton oil compared with wild-type littermates. Consistently, challenged ears of kCYC(+/-) mice exhibited massive infiltrates of inflammatory cells. In contrast, DC migration to regional LNs, drainage of cell-free antigen to LNs, antigen-specific IFN-γ production, and lymphocyte proliferation were impaired during the sensitization phase of CHS in kCYC(+/-) mice. Transfer experiments using lymphocytes from sensitized mice and real-time PCR analysis of cytokine expression using challenged ear revealed that ear swelling was enhanced because of impaired lymphatic flow. Collectively, we conclude that insufficient lymphatic drainage augments apparent inflammation to topically applied allergens and irritants. The findings add insight into the clinical problem of allergic and irritant contact dermatitis that commonly occurs in humans with peripheral edema of the lower legs.
    Journal of Investigative Dermatology 11/2011; 132(3 Pt 1):667-76. · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induction of a desired cell type by defined transcription factors (TFs) using iPS technology can be used for cell replacement therapy. However, to overcome problems such as tumor formation, genomic insertional mutagenesis by viral transduction in the induction process needs to be avoided using alternative approaches. One approach could be the direct delivery of TF protein by a protein transduction system, whereby a protein transduction domain (PTD) is fused to facilitate the penetration of cell membrane. However, fusion proteins, including TFs, are reported to be biologically less active through the interference of PTD with proper protein folding. Here, we report a proof-of-concept study in which TF proteins fused with PTDs could be reactivated by removal of PTDs from cells. We demonstrated that Sox2 and Oct3/4 proteins fused with PTD were less active in mouse embryonic stem cells. Removal of PTD by a site-specific protease, derived from tobacco etch virus (TEV), substantially restored the functionality of these proteins, proved by enhanced rescue ability for differentiation induced by endogenous Sox2 and Oct3/4 repression. These results suggest that, by removing a PTD inside the cells, directly delivered TF proteins may exert substantially enhanced function than presently considered.
    Journal of Biotechnology 05/2011; 154(4):298-303. · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCL21 expression by lymphatic endothelial cells (LECs) is essential for migration of CCR7+ immune cells from skin to regional lymph nodes (LNs). We investigated the importance of mitogen-activated protein kinase (MAPK) signaling in CCL21 expression by ECs in vitro and in vivo. Normal human dermal lymphatic microvascular ECs (HMVEC-dLy) stimulated in vitro with oncostatin M (OSM) expressed high amounts of CCL21 mRNA. CCL21 protein expression by HMVEC-dLy was also markedly increased by OSM compared with unstimulated cultures. Marked phosphorylation of MAPK 44/42 was detected in HMVEC-dLy stimulated by OSM. CCL21 expression by HMVEC-dLy was blocked by a JAK inhibitor 1, JAK3 inhibitor, and U0126 (a MAPK kinase inhibitor) in vitro, all of which blocked phosphorylation of MAPK 44/42. In addition, injection of U0126 into murine skin significantly decreased CCL21 mRNA and protein expression. Moreover, injection of U0126 before sensitization decreased migration of dendritic cells to draining LNs and decreased contact hypersensitivity responses. In summary, these results suggest that the MAPK pathway is important for CCL21 expression by LECs in vitro and in vivo. Blocking MAPK signaling within skin may offer a novel approach to treatment of inflammatory skin diseases.
    Journal of Investigative Dermatology 05/2011; 131(9):1927-35. · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CCR3 is a specific marker of anaplastic large cell lymphoma (ALCL) cells. ALCL cells also express CCL11, a ligand for CCR3, leading to the hypothesis that CCL11 may play an autocrine role in ALCL progression. In this study, we investigated a role of CCL11 in cell survival and growth of human Ki-JK cells, established from an ALCL patient, and murine EL-4 lymphoma cells. Both Ki-JK and EL-4 cells expressed cell surface CCR3. CCL11 increased cell survival rates of Ki-JK cells in a dose-dependent manner, whereas it promoted EL-4 cell proliferation. Furthermore, CCL11 induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in both Ki-JK cells and EL-4 cells. Cell survival and tumor proliferation promoted by CCL11 was completely blocked by inhibition of ERK phosphorylation. CCL11 induced expression of antiapoptotic proteins, Bcl-xL and survivin, in Ki-JK cells. CCL11 also enhanced tumor growth of EL-4 and Ki-JK cells in vivo. Consistent with these results, tumor cells of cutaneous ALCL expressed CCR3 and increased levels of phosphorylated ERK1/2, Bcl-xL, and survivin in situ. Thus, our findings prompt a novel therapeutic approach to treat relapses of an aggressive form of lymphoma based on the discovery that a cell surface marker of disease functions as a critical autocrine growth receptor.
    Cancer Research 03/2011; 71(6):2056-65. · 9.28 Impact Factor
  • Hitoshi Okochi
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic and clinical research on adult stem cells is progressing rapidly. New technology that can generate iPS (induced pluripotent stem cells) cells from various types of tissue may completely change the stem cell world and regenerative medicine. In terms of clinical applications, both bone marrow and skin are very attractive sources of adult stem cells because they are highly accessible and the procedures to obtain them are minimally invasive. However, we have to seriously consider both safety issues and cost performance when we treat patients with cultured cells. We should use animal-free materials as often as possible and remember that culture stressors may induce epigenetic changes in the cultured cells. Nonetheless, there can be no doubt that stem-cell-based therapy is a promising tool in the field of regenerative medicine.
    12/2010: pages 83-92;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells from various organs have been shown to regenerate muscle cells. Among them, skin-derived cells are promising because of their easy accessibility. We separated murine dermal cells into Sca-1 (+) and (−) fractions and investigated which of them could differentiate into muscle cells. After the cells were aggregated for 4 days and cultured on a collagen type I-coated plate for 7–10 days, the Sca-1 (−) fraction had expanded into many myoblastic cells, but the Sca-1 (+) fraction had not. Initial commitment to the myogenic lineage appeared to start during the aggregation. Sca-1 (−) cells proliferated exponentially and maintained their ability to differentiate into skeletal muscle cells within 7–10 days. About 60% of the cells showed positive staining for skeletal fast myosin heavy chain. Transplantation experiments revealed that the myoblastic cells arising after several passages were successfully engrafted into damaged host muscle. In conclusion, we have found that murine dermal Sca-1 (−) cells differentiate into muscle cells in vitro and in vivo after using an initial aggregation procedure. Their high differentiation efficiency and proliferation ability will offer substantial advantages for stem cell research.
    Tissue Engineering Part A 10/2010; 16(10):3251-9. · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.
    Biochemical and Biophysical Research Communications 10/2010; 400(4):461-5. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delineating the relative contributions of B lymphocytes during the course of autoimmune disease has been difficult. Therefore, the effects of depleting all mature B cells using a potent CD20 mAb, or of depleting circulating and marginal zone B cells using a ligand-blocking CD22 mAb, were compared in NZB/W F(1) mice, a model for human systemic lupus erythematosus. Single low-dose mAb treatments depleted B cells efficiently in both NZB/W F(1) and C57BL/6 mice. Prophylactic B cell depletion by repeated CD20 mAb treatments prolonged survival during pristane-accelerated lupus in NZB/W F(1) mice, whereas CD22 mAb had little effect. Despite effective B cell depletion, neither mAb treatment prevented autoantibody generation. In addition, CD20, CD22, and control mAb-treated NZB/W F(1) mice developed anti-mouse IgG autoantibodies in contrast to parental NZB and NZW strains, which may have reduced the effectiveness of B cell depletion. Despite this, low-dose CD20 mAb treatment initiated in 12-28-wk-old mice, and administered every 4 wk thereafter, significantly delayed spontaneous disease in NZB/W F(1) mice. By contrast, B cell depletion initiated in 4-wk-old mice hastened disease onset, which paralleled depletion of the IL-10-producing regulatory B cell subset called B10 cells. B10 cells were phenotypically similar in NZB/W F(1) and C57BL/6 mice, but were expanded significantly in young NZB/W F(1) mice. Thus, B cell depletion had significant effects on NZB/W F(1) mouse survival that were dependent on the timing of treatment initiation. Therefore, distinct B cell populations can have opposing protective and pathogenic roles during lupus progression.
    The Journal of Immunology 04/2010; 184(9):4789-800. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD19 is a B-cell transmembrane molecule that is critical for B-cell activation. CD19 serves as a scaffold protein for key signal transduction molecules including Lyn, PI3K, and Vav, by providing docking sites for these molecules via phosphorylation of CD19-Y(513), CD19-Y(482), and CD19-Y(391). We investigated the process of CD19 tyrosine phophorylation during B-cell activation using Ab specific for each of these phosphorylated tyrosines. BCR engagement induced differential tyrosine phosphorylation, as CD19-Y(513) phophorylation occurred first, and CD19-Y(482) phosphorylation was delayed and transient. Different BCR isotypes exhibited distinct patterns of CD19 phosphorylation: IgG-BCR ligation resulted in faster phosphorylation of CD19-Y(513) and more intense phosphorylation of CD19-Y(391) than IgM-BCR ligation. This affected CD19-mediated downstream pathways involving Vav, PI3K, and Akt. Additionally, the phosphorylation profile of CD19 differed distinctly according to its plasma membrane location. CD19 phosphorylated at Y(513) was almost exclusively located within lipid rafts, whereas phosphorylated Y(482) and Y(391) were found both inside and outside of the rafts. Furthermore, the phosphorylation of all three tyrosines was remarkably enhanced and prolonged following the simultaneous stimulation of BCR and CD40. Thus, variations in phosphorylation patterns may contribute to the complexity of CD19-regulated signal transduction.
    European Journal of Immunology 04/2010; 40(4):1192-204. · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cells play critical roles in the pathogenesis of lupus. To examine the influence of B cells on disease pathogenesis in a murine lupus model, New Zealand Black and New Zealand White F(1) hybrid (NZB/W) mice were generated that were deficient for CD19 (CD19(-/-) NZB/W mice), a B cell-specific cell surface molecule that is essential for optimal B cell signal transduction. The emergence of anti-nuclear Abs was significantly delayed in CD19(-/-) NZB/W mice compared with wild type NZB/W mice. However, the pathologic manifestations of nephritis appeared significantly earlier, and survival was significantly reduced in CD19(-/-) NZB/W mice compared with wild type mice. These results demonstrate both disease-promoting and protective roles for B cells in lupus pathogenesis. Recent studies have identified a potent regulatory B cell subset (B10 cells) within the rare CD1d(hi)CD5(+) B cell subset of the spleen that regulates acute inflammation and autoimmunity through the production of IL-10. In wild type NZB/W mice, the CD1d(hi)CD5(+)B220(+) B cell subset that includes B10 cells was increased by 2.5-fold during the disease course, whereas CD19(-/-) NZB/W mice lacked this CD1d(hi)CD5(+) regulatory B cell subset. However, the transfer of splenic CD1d(hi)CD5(+) B cells from wild type NZB/W mice into CD19(-/-) NZB/W recipients significantly prolonged their survival. Furthermore, regulatory T cells were significantly decreased in CD19(-/-) NZB/W mice, but the transfer of wild type CD1d(hi)CD5(+) B cells induced T regulatory cell expansion in CD19(-/-) NZB/W mice. These results demonstrate an important protective role for regulatory B10 cells in this systemic autoimmune disease.
    The Journal of Immunology 04/2010; 184(9):4801-9. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although contact hypersensitivity (CHS) has been considered a prototype of T cell-mediated immune reactions, recently a significant contribution of regulatory B cell subsets in the suppression of CHS has been demonstrated. CD22, one of the sialic acid-binding immunoglobulin-like lectins, is a B cell-specific molecule that negatively regulates BCR signaling. To clarify the roles of B cells in CHS, CHS in CD22(-/-) mice was investigated. CD22(-/-) mice showed delayed recovery from CHS reactions compared with that of wild-type mice. Transfer of wild-type peritoneal B-1a cells reversed the prolonged CHS reaction seen in CD22(-/-) mice, and this was blocked by the simultaneous injection with IL-10 receptor Ab. Although CD22(-/-) peritoneal B-1a cells were capable of producing IL-10 at wild-type levels, i.p. injection of differentially labeled wild-type/CD22(-/-) B cells demonstrated that a smaller number of CD22(-/-) B cells resided in lymphoid organs 5 d after CHS elicitation, suggesting a defect in survival or retention in activated CD22(-/-) peritoneal B-1 cells. Thus, our study reveals a regulatory role for peritoneal B-1a cells in CHS. Two distinct regulatory B cell subsets cooperatively inhibit CHS responses. Although splenic CD1d(hi)CD5(+) B cells have a crucial role in suppressing the acute exacerbating phase of CHS, peritoneal B-1a cells are likely to suppress the late remission phase as "regulatory B cells." CD22 deficiency results in disturbed CHS remission by impaired retention or survival of peritoneal B-1a cells that migrate into lymphoid organs.
    The Journal of Immunology 03/2010; 184(9):4637-45. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-dependent diabetes mellitus (IDDM) is characterized by the rapid development of potentially severe metabolic abnormalities resulting from insulin deficiency. The transplantation of insulin-producing cells is a promising approach for the treatment of IDDM. The transcription factor pancreatic duodenal homeobox 1 (Pdx1) plays an important role in the differentiation of pancreatic beta cells. In this study, the human Pdx1 gene was transduced and expressed in murine adipose tissue-derived stem cells (ASCs). To evaluate pancreatic repair, we used a mouse model of pancreatic damage resulting in hyperglycemia, which involves injection of mice with streptozotocin (STZ). STZ-treated mice transplanted with Pdx1-transduced ASCs (Pdx1-ASCs) showed significantly decreased blood glucose levels and increased survival, when compared with control mice. While stable expression of Pdx1 in ASCs did not induce the pancreatic phenotype in vitro in our experiment, the transplanted stem cells became engrafted in the pancreas, wherein they expressed insulin and C-peptide, which is a marker of insulin-producing cells. These results suggest that Pdx1-ASCs are stably engrafted in the pancreas, acquire a functional beta-cell phenotype, and partially restore pancreatic function in vivo. The ease and safety associated with extirpating high numbers of cells from adipose tissues support the applicability of this system to developing a new cell therapy for IDDM.
    The International journal of developmental biology 08/2009; 54(4):699-705. · 2.16 Impact Factor
  • Journal of dermatological science 02/2009; 54(2):129-31. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotential mesenchymal stem cells (MSC), present in many organs and tissues, represent an attractive tool for the establishment of a successful stem cell-based therapy in the field of regeneration medicine. Adipose tissue mesenchymal stem cells (AT-MSC), known as adipose-derived stem cells (ASC) are especially attractive in the context of future clinical applications because of their high accessibility and minimal invasiveness during the procedure to obtain them. The goal of the present study was to induce human ASC into functional hepatocytes in vitro within a very short period of time and to check their therapeutic potential in vivo. In vitro generated ASC-derived hepatocytes were checked for hepatocyte-specific markers and functions. Afterwards, they were transplanted into nude mice with liver injury. Twenty-four hours after transplantation, biochemical parameters were evaluated in blood serum. We have shown here that ASC can be differentiated into hepatocytes within 13 days and can reach the functional properties of primary human hepatocytes. After transplantation into mice with acute liver failure, ASC-derived hepatocytes can restore such liver functions as ammonia and purine metabolism. Markers of liver injury, alanine aminotransferase, aspartate aminotransferase, as well as ammonia, were decreased after ASC-derived hepatocyte transplantation. Our data highlight the properties of ASC as having a special affinity for hepatocyte differentiation in vitro and liver regeneration in vivo. Thus, ASC may be a superior choice for the establishment of a therapy for injured liver.
    Journal of Gastroenterology and Hepatology 07/2008; 24(1):70-7. · 3.33 Impact Factor

Publication Stats

2k Citations
341.98 Total Impact Points

Institutions

  • 2010–2014
    • National Center for Global Health and Medicine in Japan
      Edo, Tōkyō, Japan
  • 1990–2013
    • The University of Tokyo
      • • Department of Surgical Sciences
      • • College of Art and Science & Graduate School of Arts and Sciences
      Tokyo, Tokyo-to, Japan
  • 2008
    • National Cancer Center, Japan
      • Center for Cancer Control and Information Services
      Edo, Tōkyō, Japan
    • Waseda University
      • Division of Education
      Edo, Tōkyō, Japan
  • 2006
    • University Hospital Medical Information Network
      Edo, Tōkyō, Japan
  • 2004
    • National Hospital Organization Sagamihara Hospital
      Sagamihara, Kanagawa, Japan