Ziming Dong

Zhengzhou University, Cheng, Henan Sheng, China

Are you Ziming Dong?

Claim your profile

Publications (43)122.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Myricetin, a common dietary flavonoid, is widely distributed in fruits and vegetables and is used as a health food supplement based on its anti-tumor properties. However, the effect and mechanisms of myricetin in esophageal carcinoma are not fully understood. Here, we demonstrated the effect of myricetin on the proliferation, apoptosis, and invasion of the esophageal carcinoma cell lines EC9706 and KYSE30 and explored the underlying mechanism and target protein(s) of myricetin. CCK-8 assay, transwell invasion assay, wound-healing assay, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, invasion, and apoptosis. Nude mouse tumor xenograft model was built to understand the interaction between myricetin and NTD RSK2. Pull-down assay was used to verify molecular mechanism. Myricetin inhibited proliferation and invasion and induced apoptosis of EC9706 and KYSE30 cells. Moreover, myricetin was shown to bind RSK2 through the NH2-terminal kinase domain. Finally, myricetin inhibited EC9706 and KYSE30 cell proliferation through Mad1 and induced cell apoptosis via Bad. Myricetin inhibits the proliferation and invasion and induces apoptosis in EC9706 and KYSE30 cells via RSK2. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Our results provide novel insight into myricetin as a potential agent for the prevention and treatment of esophageal carcinoma.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) is the most lethal cancer causing more than 150,000 deaths in the United States in 2013. The receptor tyrosine kinase inhibitors (TKIs), such as gefitinib, are not perfect clinical therapeutic agents for NSCLC treatment due to primary or acquired TKI resistance. Herein, 3,6,2',4',5'- pentahydroxyflavone (36245-PHF) was identified as a multiple kinase inhibitor for NSCLC treatment based on the computational screening of a natural products database. 36245-PHF was shown to inhibit PI3-K, Aurora A and B kinases and overcome gefitinib-resistant NSCLC growth. Our data clearly showed that 36245-PHF markedly inhibited anchorage-independent growth of gefitinib-resistant NSCLC cell lines, and exerted a substantial chemotherapeutic effect following oral administration in a gefitinib-resistant NSCLC xenograft model. The evidence from 3 different subsequent methodological approaches, in vitro, ex vivo and in vivo, all confirmed that 36245-PHF as a multiple protein kinase inhibitor. Overall, we identified 36245-PHF as a multiple protein kinase inhibitor and as a novel therapeutic agent to overcome gefitinib-resistant NSCLC growth, which could provide a new option for clinical NSCLC oral treatment.
    The Journal of biological chemistry. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in coffee and reportedly has anticancer activities. However, the underlying molecular mechanisms and targeted proteins involved in the suppression of carcinogenesis by caffeic acid are not fully understood. In this study, we report that caffeic acid significantly inhibits colony formation of human skin cancer cells and EGF-induced neoplastic transformation of HaCaT cells dose-dependently. Caffeic acid topically applied to dorsal mouse skin significantly suppressed tumor incidence and volume in a solar UV-induced skin carcinogenesis mouse model. A substantial reduction of phosphorylation in mitogen-activated protein kinase signaling was observed in mice treated with caffeic acid either before or after solar UV exposure. Caffeic acid directly interacted with ERK1/2 and inhibited ERK1/2 activities in vitro. Importantly, we resolved the co-crystal structure of ERK2 complexed with caffeic acid. Caffeic acid interacted directly with ERK2 at amino acid residues Q105, D106 and M108. Moreover, A431 cells expressing knockdown of ERK2 lost sensitivity to caffeic acid in a skin cancer xenograft mouse model. Taken together, our results suggest that caffeic acid exerts chemopreventive activity against solar UV-induced skin carcinogenesis by targeting ERK1 and 2.
    Cancer prevention research (Philadelphia, Pa.). 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high mobility group-box 3 (HMGB3) protein belongs to the high mobility group box (HMG-box) subfamily, and recent studies have shown that HMGB3 is an oncogene for leukemia. HMGB3 is also expressed at a high level in the progression phase of breast and gastric cancer (GC). Using bioinformatic analyses, we found that HMGB3 is a potential target for miR-513b. However, the pathophysiological role of miR-513b and its relevance to the growth and development of GC have yet to be investigated. This study focuses on whether miR-513b acts as a tumor suppressor in GC. Compared with non-malignant adjacent tissues samples, qRT-PCR data showed significant downregulation of miR-513b in 74 GC tissue samples (P < 0.01). Furthermore, western blotting revealed that HMGB3 protein was overexpressed in tumor samples relative to matched, non-malignant adjacent tissues. Western blotting and qRT-PCR results showed that high expression of HMGB3 and low expression of miR-513b were both significantly associated with primary tumors, lymph node metastases, and the clinical stage (P < 0.01). MiR-513b was shown to not only inhibit the proliferation and migration of gastric cancer cells (MKN45 and SGC7901) in the CCK-8 and transwell assays, but also to promote cell apoptosis in a flow-cytometric apoptosis assay. In western blot and luciferase assays, HMGB3 was identified as a major target of miR-513b. Moreover, we also found that the expression of HMGB3 lacking in 3' UTR could abrogate the anti-migration and pro-apoptosis function of miR-513b. These findings suggest the importance of miR-513b targeting of HMGB3 in the regulation of growth, migration and apoptosis of GC, improve our understanding of the mechanisms of GC pathogenesis, and may promote the development of novel targeted therapies.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human DNA polymerase β (DNA polymeraseβ (polβ)) is a small monomeric protein which is essential for short-patch base excision repair (BER). It plays an important role in regulating the radiation sensitivity of tumor cells in the course of tumor radiation therapy. In this study, qRT-PCR and Western blot assays were used to quantify polβ expression levels in esophageal carcinoma (EC) cells that were transfected with polβ small interfering RNA (siRNA). Cell counting Kit-8 (CCK-8), flow cytometry, and Hoechst/PI stain assays were conducted to evaluate the effects of silencing polβ on the radiotherapeutic sensitivity of EC cells. We found that the expression levels of polβ in EC cells were significantly decreased after transfection with polβ siRNA. Then, we found that polβ silencing increased the sensitivity of EC cells to radiation therapy. In conclusion, our study paves the way for a better understanding of the mechanism of the polβ gene in DNA repair, and we propose that RNA interference technology will have important applications in gene therapy of EC and other cancers in the future.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solar ultraviolet (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the USA. The mitogen-activated protein (MAP) kinase cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAP kinase cascades. In this study, phosphorylation of RSK and MSK1 was up-regulated in human squamous cell carcinoma (SCC) and solar UV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate solar UV-induced phosphorylation of CREB and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of solar UV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in solar UV-induced phosphorylation of cAMP response element-binding protein (CREB), c-Fos and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against solar UV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1.
    Cancer prevention research (Philadelphia, Pa.). 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial–mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 04/2014; · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) can act as either oncogenes or tumor suppressor genes under different conditions and thus can play a significant role in cancer development. We investigated miR-655 expression in a cohort of esophageal squamous cell carcinoma (ESCC) to assess the impact of this miRNA on ESCC cell invasion and metastasis. A qRT-PCR assay was used to quantify miR-655 expression levels in 34 paired ESCC samples and adjacent non-tumor tissues. Wound healing and transwell assays were used to evaluate the effects of miR-655 expression on the invasiveness of ESCC cells. Luciferase reporter and western blot assays were used to determine whether the mRNA encoding pituitary tumor-transforming gene-1 (PTTG1) is a major target of miR-655. The expression level of miR-655 in ESCC tissues was found to be lower than in adjacent non-tumor tissues (P < 0.05). This relatively low expression level was significantly associated with the occurrence of lymph node metastases (P < 0.05). Migration rates were significantly lower for two ESCC-derived cell lines (EC9706 and KYSE150) transfected with miR-429 mimics (P < 0.05). Subsequent western blot and luciferase reporter assays demonstrated that miR-655 could bind to putative binding sites within the PTTG1 mRNA 3'-untranslated region (3'-UTR) and thus reduce the expression. miR-655 is expressed at low levels in primary ESCC tissues, and up-regulation of miR-655 inhibits ESCC cell invasiveness by targeting PTTG1. Our findings suggest that PTTG1 may act as a major target of miR-655. This study improves our understanding of the mechanisms underlying ESCC pathogenesis and may promote the development of novel targeted therapies.
    Journal of Translational Medicine 12/2013; 11(1):301. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are small, noncoding RNAs approximately 18-24 nucleotides in length that negatively regulate gene expression at the posttranscriptional and/or translational level by binding to complimentary sequences in the 3'-untranslated regions of target mRNAs. Growing evidence has indicated the important roles for different miRNA species in the development of different cancers. Therefore, miRNAs have the potential to become new biological markers for esophageal squamous cell carcinoma (ESCC) and to be applied in the diagnosis, prognosis, and targeted treatment of ESCC. In this study, we performed a miRNA microarray to analyze the miRNA expression profile in ESCC compared to normal tissues. Then, we made a preliminary analysis of the biological function for the most differentially expressed miRNAs and their potentially target genes regulated. Some microarray results were validated by performing quantitative RT-PCR. The study provided evidence that linked the biological role of miRNAs to ESCC and showed that miRNAs could undertake a variety of mechanisms. Additionally, we also found that altered miR-429 and miR-451 expression levels were associated with the occurrence of lymph node metastases and the differentiation status and TNM stage in ESCC. The study of miRNAs may lead to finding novel methods to diagnose, treat, and prevent ESCC.
    Tumor Biology 11/2013; · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The c-Jun N-terminal kinases (JNKs) play an important role in many physiological processes induced by numerous stress signals. Each JNK protein appears to have a distinct function in cancer, diabetes, or Parkinson's disease. Herein, we found that licochalcone A, a major phenolic constituent isolated from licorice root, suppressed JNK1 activity, but had little effect on JNK2 in vitro activity. Although licochalcone A binds with JIP1 competitively with either JNK1 or JNK2, a computer simulation model showed that after licochalcone A binding, the ATP-binding cleft of JNK1 was distorted more substantially than that of JNK2. This could reduce the affinity of JNK1 more than JNK2 for ATP binding. Furthermore, licochalcone A inhibited JNK1-mediated, but not JNK2-mediated, c-Jun phosphorylation in both ex vivo and in vitro systems. We also observed that in colon and pancreatic cancer cell lines, JNK1 is highly expressed compared with normal cell lines. In cancer cell lines, treatment with licochalcone A or knocking down JNK1 expression suppressed colon and pancreatic cancer cell proliferation and colony formation. The inhibition resulted in G1 phase arrest and apoptosis. Moreover, an in vivo xenograft mouse study showed that licochalcone A treatment effectively suppressed the growth of HCT116 xenografts, without affecting the body weight of mice. These results demonstrate that licochalcone A is a selective JNK1 inhibitor. Therefore, we suggest that because of JNK1's critical role in colon cancer and pancreatic carcinogenesis, licochalcone A might have preventive or therapeutic potential against these devastating diseases.
    Cancer Prevention Research 11/2013; · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that can cause adult T-cell leukemia (ATL) and other diseases. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, interacts with several transcription factors and is involved in T cell proliferation, viral gene transcription and cellular transformation. Cyclin D1 is a pivotal regulatory protein involved in cell cycle progression, and its depressed expression correlates with cell cycle prolongation or arrested at the G1/S transition. In our present study, we observed that HBZ expression suppressed cyclin D1 level. To investigate the role of HBZ on cyclin D1 depression, we transduced HBZ with lentivirus vector into 293T cells, CEM cells and Jurkat cells. The results of Western blot, RT-PCR and luciferase assays showed that transcriptional activity of the cyclin D1 promoter was suppressed by the bZIP domain of HBZ (HBZ-bZIP) through cyclic AMP response element (CRE) site. Immunoprecipitation and GST pull-down assays showed the binding of HBZ-bZIP to CRE-binding protein (CREB), which confirmed that the cyclin D1 promoter activity inhibition via the CRE-site was mediated by HBZ-bZIP. The results suggested that HBZ suppressed cyclin D1 transcription through interactions with CREB and along with other viral protein, HBZ may play a causal role for leukemogenesis.
    Molecular Biology Reports 09/2013; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Linzhou City in northern China has a high incidence of esophageal squamous cell carcinoma (ESCC). This study retrospectively analyzed the data of 231 cases with ESCC collected from 1998 to 2012. Mutations of DNA polymerase β (polβ) gene in the ESCC samples from patients in Linzhou City were examined by amplifying polβ cDNA by RT-PCR followed by cloning and sequencing. Mutations in polβ were found in 105 cases (45.9 %). Nine types of mutations were identified in the polβ cDNA; the most common were 177-234 nt deletion (11.3 %), 462 nt G → T (9.1 %), and 648 nt G → C (6.9 %). Mutations in polβ appeared to be associated with TNM status (P = 0.048). Follow-up data was used for survival analysis. The overall 5-year survival rate of the 231 patients was 37.4 %; the rate for patients with wild-type (WT) polβ was 41.8 %. Compared with the WT polβ group, the median survival for patients with specific mutations (177-234 nt deletion, 462 nt G → T, or 613 nt A → T) was significantly shorter (all P = 0.000), and the 5-year survival rate decreased to 0 %. Patients with the 648 nt G → C mutation had improved survival (P = 0.000) with a 5-year survival rate of 100 %. Our results identified nine types of mutations within polβ cDNA in ESCC patients with four mutations related to patient survival.
    Tumor Biology 08/2013; · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study analyzed the correlation of DNA polymerase β (DNA polβ) promoter mutations and activity in esophageal squamous cell carcinoma (ESCC). The DNA polβ promoter was amplified from 108 ESCC samples and adjacent paracancerous samples by PCR and cloned into the pGL3-enhancer luciferase vector. The recombined vectors were transfected into esophageal carcinoma cells (EC9706, Eca109, and KYSE30), and luciferase activity was detected using dual luciferase reporter gene technology. Eleven polβ promoter mutations were identified and submitted to GenBank. The mutation rate of the DNA polβ promoter was higher in ESCC tissues (36/108, 33.3 %) than in the paired paracancerous tissues (21/108, 19.4 %) (P = 0.021). The C → A mutation at locus -37 was the hotspot mutation in cancerous tissues, and its frequency was higher in ESCC tissues (26/108) than in paracancerous tissues (7/108) (P = 0.00). The highest relative luciferase activity (RLA) was observed in the DNA polβ promoter, with a C → A mutation at -37. Significant differences in RLA were observed between mutant DNA polβ promoters (except for C detected at -19, T → C at -194, C → A at -37, and T → C at 30) and the wild-type DNA polβ promoter (P = 0.000), and RLA was significantly higher in ESCC tissues than in paracancerous tissues (P = 0.003). Our findings suggest that the upregulation of transcriptional activity induced by mutations in the DNA polβ promoter in ESCC tissues may be one of the molecular mechanisms mediating abnormal overexpression of DNA polβ in ESCC.
    Tumor Biology 06/2013; · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported endothelial-like differentiation (ELD) of immature dendritic cells (iDCs) in the microenvironment derived from EC9706 human esophageal squamous cell carcinoma conditioned medium (CM). However, the CM is far different from the esophageal carcinoma tissue of patients. In addition, the potential role of peri-esophageal carcinoma in the ELD of iDCs is also unknown. In the present study, we showed that the tumor microenvironment derived from esophageal carcinoma homogenate promoted iDCs to differentiate from the DC pathway toward endothelial cells, while the peri-esophageal carcinoma homogenate did not have this function. During the course of ELD, ERK signaling pathway and CREB were activated. Blocking MEK, both the phosphorylation of ERK and CREB, and the ELD of iDCs were inhibited. These data suggest that esophageal carcinoma tissue, not peri-esophageal carcinoma tissue, can drive iDCs to differentiate into endothelial-like cells, instead of differentiation into mature DCs, thereby losing the ability of antigen presentation.
    Oncology Reports 05/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To explore the expression of HAX-1 mRNA and protein in esophageal squamous cell carcinoma (ESCC) and its relation with the prognosis of patients with ESCC. METHODS: The expression of HAX-1 mRNA and protein were detected with quantitative real-time RTPCR and immunohistochemical method in 112 ESCC samples and 112 corresponding nonneoplastic samples. Survival curves were made with follow-up data. The relations of the prognosis with clinical and pathological characteristics were analyzed. RESULTS: The expression level of HAX-1 mRNA and the strong positive rate of HAX-1 protein were significantly higher in ESCC samples (0.527 +/- 0.060 and 45.54%) than that in non-neoplastic samples (0.121 +/- 0.017 and 0.00%), and in ESCC samples with lymph node metastasis (0.554 +/- 0.054 and 71.11%) than that in ESCC samples without lymph node metastasis (0.509 +/- 0.058 and 28.36%) (all P < 0.01). HAX-1 mRNA expression level was a risk factor of lymph node metastasis in patients with ESCC (P = 0.000). There were significant differences in survival curves between lymph node metastatic group and non-metastatic group (P = 0.000), and among groups of HAX-1 protein expression +, ++and +++(,P = 0.000); but no statistical significance between male patients and female patients (P = 0.119), and between [greater than or equal to]60 years old patients and <60 years old patients (P = 0.705). The level of HAX-1 mRNA (P = 0.000) and protein (P = 0.005) were risk factors of survival, but lymph node metastasis (P = 0.477) was not. CONCLUSION: There is HAX-1 over-expression in ESCC tissue and HAX-1 mRNA level is a risk factor of lymph node metastasis. The level of HAX-1 mRNA and protein were risk factors of survival in patients with ESCC. HAX-1 may be a novel therapeutic target for ESCC treatment. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5130393079296037.
    Diagnostic Pathology 03/2013; 8(1):47. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). METHODS: The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. RESULTS: Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (chi2=6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at ser10 and AP-1 activation. CONCLUSION: EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of NPC.
    BMC Cancer 03/2013; 13(1):124. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis and treatment. Here we report parallel protein kinase array studies aimed at determining the dominant signaling pathway involved in SUV irradiation. Our results indicated that the p38-related signal transduction pathway was dramatically affected by SUV irradiation. SUV (60 kJ UVA/m2/3.6 kJ UVB/m2) irradiation stimulates phosphorylation of p38α (MAPK14) by 5.78-fold, MSK2 (RPS6KA4) by 6.38-fold and HSP27 (HSPB1) by 34.56-fold compared to untreated controls. By investigating the tumorigenic role of SUV-induced signal transduction in wildtype and p38 dominant negative (p38 DN) mice, we found that p38 blockade yielded fewer and smaller tumors. These results establish that p38 signaling is critical for SUV-induced skin carcinogenesis.
    Cancer Research 02/2013; · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a promoter to initiate transcription is important for the control of gene expression. Mutations in the DNA polymerase beta (po1β) promoter may affect the transcription of this gene; however, the relationship between these mutations and the upregulation of the expression of po1β remains unclear. Therefore, in the present study, three po1β promoter mutants (M1, -37 C→A; M2, -114 G→A, -37 C→A; M3, -194 T→C) were generated to examine the effect of promoter mutations on polβ gene expression and sensitivity to cisplatin. We found that the M1 and M2 mutant polβ promoter constructs showed higher RLA than the wild-type polβ promoter (P < 0.01), whereas the activity of the M3 polβ promoter did not differ significantly from that of the wild-type polβ promoter (P > 0.05). The expression levels of polβ mRNA and protein were significantly higher (P < 0.01) and the sensitivity to cisplatin was significantly lower (P < 0.05) in Eca9706(-/-)-M1 and Eca9706(-/-)-M2 cells than in Eca9706(-/-)-W. The expression levels of polβ mRNA and protein and the sensitivity to cisplatin were not significantly different between Eca9706(-/-)-M3 and Eca9706(-/-)-W cells (P > 0.05).These results revealed that specific mutations of the polymerase beta gene promoter significantly enhanced the gene's transcriptional activity. These mutations correspondingly increased the gene's mRNA and protein product, at the same time reduced the esophageal cancer cells' sensitivity to cisplatin.
    Molecular Biology Reports 11/2012; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal cancer is an intractable disease due to late diagnosis, high incidence of post-surgical locoregional recurrence and frequent distant metastasis. Oncolytic adenovirus (Ad) vectors are a promising method for cancer treatment. The H101 virus is a recombinant Ad which has replication-selective properties and replicates only in tumor cells. The coxsackievirus and adenovirus receptor (CAR) is considered a surrogate marker that monitors the outcome of Ad-mediated gene therapy. Accumulating evidence indicates that CAR expression levels are lower in various types of tumors such as ovarian, lung, breast and bladder when compared to their normal counterparts. In this study, we reported that trichostatin A (TSA) induced the expression of CAR in esophageal squamous cell carcinoma (ESCC) cell lines through the MAPK/ERK1/2 signaling pathway. The expression levels of CAR were positively related with the antitumor activity of H101. Our results suggest that TSA increases the antitumor activity of the oncolytic adenovirus H101 through the MAPK/ERK pathway.
    International Journal of Molecular Medicine 09/2012; · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ceftriaxone, an FDA-approved third-generation cephalosporin antibiotic, has antimicrobial activity against both gram-positive and gram-negative organisms. Generally, ceftriaxone is used for a variety of infections such as community-acquired pneumonia, meningitis and gonorrhea. Its primary molecular targets are the penicillin-binding proteins. However, other activities of ceftriaxone remain unknown. Herein, we report for the first time that ceftriaxone has antitumor activity in vitro and in vivo. Kinase profiling results predicted that Aurora B might be a potential 'off' target of ceftriaxone. Pull-down assay data confirmed that ceftriaxone could bind with Aurora B in vitro and in A549 cells. Furthermore, ceftriaxone (500 µM) suppressed anchorage-independent cell growth by targeting Aurora B in A549, H520 and H1650 lung cancer cells. Importantly, in vivo xenograft animal model results showed that ceftriaxone effectively suppressed A549 and H520 lung tumor growth by inhibiting Aurora B. These data suggest the anticancer efficacy of ceftriaxone for the treatment of lung cancers through its inhibition of Aurora B.
    Carcinogenesis 09/2012; · 5.64 Impact Factor

Publication Stats

97 Citations
122.84 Total Impact Points

Institutions

  • 2006–2014
    • Zhengzhou University
      Cheng, Henan Sheng, China
  • 2012
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      • Chemical Biology Research Center
      Anzan, Gyeonggi Province, South Korea
    • Henan University of Tcm
      Cheng, Henan Sheng, China
  • 2010–2012
    • University of Minnesota Duluth
      Duluth, Minnesota, United States