Are you Kevin P Roush?

Claim your profile

Publications (3)10.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of arterial A(1) receptor causes vasoconstriction via increased sEH and CYP4A proteins. However, in mice fed HS-containing diet, upregulation of A(2A) receptor protein triggers vascular relaxation through ATP-sensitive (K(+)) channels via upregulation of CYP2J2 enzyme.
    AJP Regulatory Integrative and Comparative Physiology 07/2010; 299(1):R325-33. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine mediates vascular responses through four receptor subtypes: A(1), A(2A), A(2B), and A(3). The role of A(2A) receptors in aortic vascular tone was investigated using A(2A) adenosine receptor (AR) knockout (A(2A)KO) and corresponding wild-type (A(2A)WT) mice. Isolated aortic rings from A(2A)WT and A(2A)KO mice were precontracted with phenylephrine (10(-7) M), and concentration responses for adenosine analogs and selective agonists/antagonists were obtained. Nonselective adenosine analog (NECA; EC(50) = 6.78 microM) and CGS-21680 (A(2A)AR selective agonist; EC(50) = 0.013 microM) produced concentration-dependent relaxation (maximum of 25% and 28% relaxation at 10(-5) M NECA and CGS-21680, respectively) in A(2A)WT aorta. In A(2A)KO aorta, NECA (EC(50) = 0.075 microM) induced concentration-dependent contraction (maximum contraction of 47% at 10(-6) M; P < 0.05 compared with A(2A)WT), whereas CGS-21680 produced no response. SCH-58261 (10(-6) M; A(2A)AR selective antagonist) abolished both NECA- and CGS-21680-mediated vasorelaxation in A(2A)WT (P < 0.05), whereas no change was observed in A(2A)KO. When DPCPX (10(-5) M; A(1) selective antagonist) was used in NECA concentration response, greater vasorelaxation was observed in A(2A)WT (50% vs. 25% in controls at 10(-5) M; P < 0.05), whereas lower contraction was seen in A(2A)KO tissues (5% vs. 47% in controls at 10(-6) M; P < 0.05). Aortic endothelial function, determined by response to acetylcholine, was significantly higher in WT compared with KO (66% vs. 51%; P < 0.05). BAY 60-6583 (A(2B) selective agonist) produced similar relaxation in both KO and WT tissues. In conclusion, A(2A)AR KO mice had significantly lower aortic relaxation and endothelial function, suggesting that the A(2A)AR plays an important role in vasorelaxation, probably through an endothelium-dependent mechanism.
    AJP Heart and Circulatory Physiology 09/2009; 297(5):H1655-60. · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The A(1) adenosine receptor (A(1)AR) is coupled to G(i)/G(o) proteins, but the downstream signaling pathways in smooth muscle cells are unclear. This study was performed in coronary artery smooth muscle cells (CASMCs) isolated from the mouse heart [A(1)AR wild type (A(1)WT) and A(1)AR knockout (A(1)KO)] to delineate A(1)AR signaling through the PKC pathway. In A(1)WT cells, treatment with (2S)-N(6)-(2-endo-norbornyl)adenosine (ENBA; 10(-5)M) increased A(1)AR expression by 150%, which was inhibited significantly by the A(1)AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (10(-6)M), but not in A(1)KO CASMCs. PKC isoforms were identified by Western blot analysis in the cytosolic and membrane fractions of cell homogenates of CASMCs. In A(1)WT and A(1)KO cells, significant levels of basal PKC-alpha were detected in the cytosolic fraction. Treatment with the A(1)AR agonist ENBA (10(-5)M) translocated PKC-alpha from the cytosolic to membrane fraction significantly in A(1)WT but not A(1)KO cells. Phospholipase C isoforms (betaI, betaIII, and gamma(1)) were analyzed using specific antibodies where ENBA treatment led to the increased expression of PLC-betaIII in A(1)WT CASMCs while having no effect in A(1)KO CASMCs. In A(1)WT cells, ENBA increased PKC-alpha expression and p42/p44 MAPK (ERK1/2) phospohorylation by 135% and 145%, respectively. These effects of ENBA were blocked by Gö-6976 (PKC-alpha inhibitor) and PD-98059 (p42/p44 MAPK inhibitor). We conclude that A(1)AR stimulation by ENBA activates the PKC-alpha signaling pathway, leading to p42/p44 MAPK phosphorylation in CASMCs.
    AJP Heart and Circulatory Physiology 08/2009; 297(3):H1032-9. · 3.63 Impact Factor