Mami Matsuo-Takasaki

University of Tsukuba, Tsukuba, Ibaraki, Japan

Are you Mami Matsuo-Takasaki?

Claim your profile

Publications (16)94.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem (ES) cells are useful for elucidating the molecular mechanisms of cell fate decision in the early development of mammals. It has been shown that aggregate culture of ES cells efficiently induces neuroectoderm differentiation. However, the molecular mechanism that leads to selective neural differentiation in aggregate culture is not fully understood. Here, we demonstrate that the oxygen-sensitive hypoxia-inducible transcription factor, Hif-1α, is an essential regulator for neural commitment of ES cells. We found that a hypoxic environment is spontaneously established in differentiating ES cell aggregates within three days, and that this time window coincides with Hif-1α activation. In ES cells in adherent culture under hypoxic conditions, Hif-1α activation was correlated with significantly greater expression of neural progenitor specific-gene Sox1 compared to ES cells in adherent culture under normoxic conditions. In contrast, Hif-1α-depleted ES cell aggregates showed severe reduction in Sox1 expression and maintained high expression of undifferentiated ES cell marker genes and epiblast-marker gene Fgf5 on day 4. Notably, chromatin immune precipitation assay and luciferase assay showed that Hif-1α might directly activate Sox1 expression. Of additional importance is our finding that attenuation of Hif-1α resulted in an increase of BMP4, a potent inhibitor of neural differentiation, and led to a high level of phosphorylated Smad1. Thus, our results indicate that Hif-1α acts as a positive regulator of neural commitment by promoting the transition of ES cell differentiation from the epiblast into the neuroectoderm state via direct activation of Sox1 expression and suppressing endogenous BMP signaling.
    Stem cells and development 11/2013; 23(18). DOI:10.1089/scd.2013.0278 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.
    PLoS ONE 08/2012; 7(8):e42855. DOI:10.1371/journal.pone.0042855 · 3.23 Impact Factor
  • M. Matsuo-Takasaki · Y. Zhao · O. Ohneda ·

    Differentiation 11/2010; 80. DOI:10.1016/j.diff.2010.09.084 · 3.44 Impact Factor
  • Source
    Akira Takai · Hidehiko Inomata · Akiko Arakawa · Rieko Yakura · Mami Matsuo-Takasaki · Yoshiki Sasai ·
    [Show abstract] [Hide abstract]
    ABSTRACT: During early embryogenesis, the neural plate is specified along the anterior-posterior (AP) axis by the action of graded patterning signals. In particular, the attenuation of canonical Wnt signals plays a central role in the determination of the anterior brain region. Here, we show that the extracellular matrix (ECM) protein Del1, expressed in the anterior neural plate, is essential for forebrain development in the Xenopus embryo. Overexpression of Del1 expands the forebrain domain and promotes the formation of head structures, such as the eye, in a Chordin-induced secondary axis. Conversely, the inhibition of Del1 function by a morpholino oligonucleotide (MO) represses forebrain development. Del1 also augments the expression of forebrain markers in neuralized animal cap cells, whereas Del1-MO suppresses them. We previously reported that Del1 interferes with BMP signaling in the dorsal-ventral patterning of the gastrula marginal zone. By contrast, we demonstrate here that Del1 function in AP neural patterning is mediated mainly by the inhibition of canonical Wnt signaling. Wnt-induced posteriorization of the neural plate is counteracted by Del1, and the Del1-MO phenotype (posteriorization) is reversed by Dkk1. Topflash reporter assays show that Del1 suppresses luciferase activities induced by Wnt1 and beta-catenin. This inhibitory effect of Del1 on canonical Wnt signaling, but not on BMP signaling, requires the Ror2 pathway, which is implicated in non-canonical Wnt signaling. These findings indicate that the ECM protein Del1 promotes forebrain development by creating a local environment that attenuates the cellular response to posteriorizing Wnt signals via a unique pathway.
    Development 10/2010; 137(19):3293-302. DOI:10.1242/dev.051136 · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture.
    Cell stem cell 12/2008; 3(5):519-32. DOI:10.1016/j.stem.2008.09.002 · 22.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show here that a secreted EGF-Discoidin-domain protein, Xenopus Del1 (xDel1), is an essential factor for dorsal development in the early Xenopus embryo. Knockdown of the xDel1 function causes obvious ventralization of the embryo. Conversely, overexpression of xDel1 expands dorsal-marker expression and suppresses ventral-marker expression in the gastrula embryo. Forced expression of xDel1 dorsalizes ventral marginal zone explants, whereas it weakly induces neural differentiation but not mesodermal differentiation in animal caps. The dorsalizing activity of xDel1 is dependent on the Discoidin domains and not on the RGD motif (which is implicated in its angiogenic activity) or EGF repeats. Luciferase assays show that xDel1 attenuates BMP-signaling reporter activity by interfering with the pathway downstream of the BMP receptor. Thus, xDel1 functions as a unique extracellular regulatory factor of DV patterning in early vertebrate embryogenesis.
    Developmental Biology 07/2007; 306(1):160-9. DOI:10.1016/j.ydbio.2007.03.008 · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Xenopus, an asymmetric distribution of Wnt activity that follows cortical rotation in the fertilized egg leads to the dorsal-ventral (DV) axis establishment. However, how a clear DV polarity develops from the initial difference in Wnt activity still remains elusive. We report here that the Teashirt-class Zn-finger factor XTsh3 plays an essential role in dorsal determination by enhancing canonical Wnt signaling. Knockdown of the XTsh3 function causes ventralization in the Xenopus embryo. Both in vivo and in vitro studies show that XTsh3 substantially enhances Wnt signaling activity in a beta-catenin-dependent manner. XTsh3 cooperatively promotes the formation of a secondary axis on the ventral side when combined with weak Wnt activity, whereas XTsh3 alone has little axis-inducing ability. Furthermore, Wnt1 requires XTsh3 for its dorsalizing activity in vivo. Immunostaining and protein analyses indicate that XTsh3 is a nuclear protein that physically associates with beta-catenin and efficiently increases the level of beta-catenin in the nucleus. We discuss the role of XTsh3 as an essential amplifying factor of canonical Wnt signaling in embryonic dorsal determination.
    The EMBO Journal 06/2007; 26(9):2350-60. DOI:10.1038/sj.emboj.7601684 · 10.43 Impact Factor
  • Source
    Hong-Lin Su · Keiko Muguruma · Mami Matsuo-Takasaki · Mineko Kengaku · Kiichi Watanabe · Yoshiki Sasai ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.
    Developmental Biology 03/2006; 290(2):287-96. DOI:10.1016/j.ydbio.2005.11.010 · 3.55 Impact Factor
  • Mami Matsuo-Takasaki · Michiru Matsumura · Yoshiki Sasai ·
    [Show abstract] [Hide abstract]
    ABSTRACT: During gastrulation in Xenopus, the head ectoderm is subdivided into the central nervous system (CNS) anlage (neural plate) and the non-CNS ectoderm (i.e. epidermis, placodes and neural crest). The winged-helix transcription factor Xfoxi1a is one of the earliest markers for the preplacodal region at the mid-neurula stage. Interestingly, before the establishment of the preplacodal region, Xfoxi1a expression is detected in the entire cephalic non-neural ectoderm at the mid- and late gastrula stages. The present study focuses on the role of Xfoxi1a particularly at the gastrula stages. The early Xfoxi1a expression in the anteroventral ectoderm is dependent on Bmp signals and suppressed by Wnt signals. Inhibition of Xfoxi1a activities by injection of antisense oligonucleotides leads to suppression of non-CNS ectodermal markers (e.g. keratin) and expansion of the anterior expression domain of the CNS marker Sox2. Conversely, misexpression of Xfoxi1a suppresses Sox2 and induces keratin in the anterior neural plate. In the animal cap, Xfoxi1a overexpression antagonizes the neuralizing activity of Chordin (Chd). Studies using an inducible Xfoxi1a construct (GR-Xfoxi1a) show that the ventralizing function of Xfoxi1a is confined to the gastrula stage. Thus, Xfoxi1a is an essential regulator of ventral specification of the early head ectoderm during gastrulation.
    Development 10/2005; 132(17):3885-94. DOI:10.1242/dev.01959 · 6.46 Impact Factor
  • Source
    Ting Luo · Mami Matsuo-Takasaki · Megan L Thomas · Daniel L Weeks · Thomas D Sargent ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the Xenopus homolog of the mammalian transcription factor AP-2alpha (XAP-2) is activated throughout the animal hemisphere shortly after the midblastula transition, and becomes restricted to prospective epidermis by the end of gastrulation, under the control of BMP signal modulation. Elevated expression in the future neural crest region begins at this time. Ectopic expression of XAP-2 can restore transcription of epidermal genes in neuralized ectoderm, both in ectodermal explants and in the intact embryo. Likewise, loss of XAP-2 function, accomplished by injection of antisense oligonucleotides or by overexpression of antimorphic XAP-2 derivatives, leads to loss of epidermal and gain of neural gene expression. These treatments also result in gastrulation failure. Thus, AP-2 is a critical regulator of ectodermal determination that is required for normal epidermal development and morphogenesis in the frog embryo.
    Developmental Biology 06/2002; 245(1):136-44. DOI:10.1006/dbio.2002.0621 · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have isolated a novel secreted dorsalizing factor of the neural tube, Xenopus Tiarin, which belongs to the olfactomedin-related family. Tiarin expression starts at the late gastrula stage in the nonneural ectoderm adjacent to the anterior neural plate. Overexpression of Tiarin in the embryo causes expansion of dorsal neural markers and suppression of ventral markers. In the eye-forming field, Tiarin overexpression induces the retinal markers and represses optic stalk markers. Tiarin directly dorsalizes neural tissues in the absence of mesodermal tissues and antagonizes the ventralizing activity of Sonic hedghog (Shh). Unlike BMP4, another dorsalizing factor, Tiarin does not display antineuralizing activity on the ectoderm or mesoderm-ventralizing activity. These findings show that Tiarin is a novel patterning signal candidate acting in the specification of the dorsal neural tube.
    Neuron 03/2002; 33(4):515-28. DOI:10.1016/S0896-6273(02)00590-1 · 15.05 Impact Factor
  • Ting Luo · Mami Matsuo-Takasaki · Thomas D. Sargent ·
    [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, there are six or more copies of genes related to the Drosophila pattern formation homeodomain gene Distal-less. Among this family, Dlx3 and Dlx5 share extensive sequence homology and have similar, but distinctive, expression patterns, suggesting that these two factors may have substantially redundant developmental functions. Here we show that at the earliest phases of embryogenesis in Xenopus, there are significant differences between Dlx3 and Dlx5 expression and that this correlates with different functions in the restriction of neural crest and neural plate boundaries, respectively.
    Molecular Reproduction and Development 11/2001; 60(3):331-7. DOI:10.1002/mrd.1095 · 2.53 Impact Factor
  • Source
    T Luo · M Matsuo-Takasaki · J H Lim · T D Sargent ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Three members of the vertebrate Distal-less gene family, Dlx3, 5 and 6, are transcribed in early gastrula embryos of Xenopus laevis. This expression is confined to ectoderm and is excluded from the presumptive neural plate region. Expression of all three genes is dependent upon BMP signaling, with significant differences in how the three genes respond to the BMP antagonist chordin. This correlates with the different expression domain boundaries in vivo for Dlx3 compared to Dlx5 and 6, suggesting that BMP signal attenuation could be the primary factor in determining these different patterns in the gastrula ectoderm.
    The International Journal of Developmental Biology 07/2001; 45(4):681-4. · 1.90 Impact Factor
  • Source
    Mami Matsuo-Takasaki · Jae H Lim · Maureen J Beanan · Sheryl M Sato · Thomas D Sargent ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified and cloned a novel zinc finger gene, Fez (forebrain embryonic zinc-finger), as a potential downstream determinant of anterior neural plate formation in Xenopus. Fez was isolated as one of several neural-specific genes that was induced by the neuralizing factor, noggin (Smith and Harland, 1992. Cell 70, 829-840), in uncommitted ectoderm. Fez has an open reading frame comprising 466 amino acids, and contains six C(2)H(2) type zinc finger domains, which are highly conserved among Drosophila, zebrafish, mouse, and human. In Xenopus, the expression of Fez begins at stage 12 in the rostral end of the neural plate, and by stage 45, it is localized to several telencephalic regions, including the olfactory bulbs, nervus terminalis, and ventricular zone. The mouse homologue of Fez is similarly expressed in the mouse forebrain by embryonic day 11.
    Mechanisms of Development 06/2000; 93(1-2):201-4. DOI:10.1016/S0925-4773(00)00264-1 · 2.44 Impact Factor
  • Source
    Mami Matsuo-Takasaki · Jae H Lim · Sheryl M Sato ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The POU domain gene, XlPOU 2, acts as a transcriptional activator during mid-gastrulation in Xenopus. Overexpression or misexpression of VP16-POU-GR, a fusion protein consisting of the strong activator domain of VP16 and the POU domain of XlPOU 2, results in ectopic expression of the neural-specific genes, nrp-1, en-2, and beta-tubulin. In contrast, overexpressing a dominant-inhibitory form of XlPOU 2 inhibits the chordin-induced neuralization of uncommitted ectoderm, and results in a loss of nrp-1 and en-2 expression in embryos. Furthermore, in uncommitted ectoderm, XlPOU 2 regulates the developmental neural program that includes a number of pre-pattern genes and at least one proneural gene, X-ngnr-1, thus playing a key role during neural determination.
    Mechanisms of Development 01/2000; 89(1-2):75-85. DOI:10.1016/S0925-4773(99)00204-X · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patterning of the embryonic ectoderm is dependent upon the action of negative (antineural) and positive (neurogenic) transcriptional regulators. Msx1 and Dlx3 are two antineural genes for which the anterior epidermal-neural boundaries of expression differ, probably due to differential sensitivity to BMP signaling in the ectoderm. In the extreme anterior neural plate, Dlx3 is strongly expressed while Msx1 is silent. While both of these factors prevent the activation of genes specific to the nascent central nervous system, Msx1 inhibits anterior markers, including Otx2 and cement gland-specific genes. Dlx3 has little, if any, effect on these anterior neural plate genes, instead providing a permissive environment for their expression while repressing more panneural markers, including prepattern genes belonging to the Zic family and BF-1. These properties define a molecular mechanism for translating the organizer-dependent morphogenic gradient of BMP activity into spatially restricted gene expression in the prospective anterior neural plate.
    Developmental Biology 09/1999; 212(2):455-64. DOI:10.1006/dbio.1999.9374 · 3.55 Impact Factor

Publication Stats

773 Citations
94.58 Total Impact Points


  • 2010-2013
    • University of Tsukuba
      • Department of Immunology and Medical Genetics
      Tsukuba, Ibaraki, Japan
  • 2002-2010
    • RIKEN
      • Center for Developmental Biology (CDB)
      Вако, Saitama, Japan
    • University of Iowa
      • Department of Biochemistry
      Iowa City, Iowa, United States
  • 1999-2001
    • National Institute of Child Health and Human Development
      Maryland, United States